869 research outputs found

    Performance and Detection of M-ary Frequency Shift Keying in Triple Layer Wireless Sensor Network

    Full text link
    This paper proposes an innovative triple layer Wireless Sensor Network (WSN) system, which monitors M-ary events like temperature, pressure, humidity, etc. with the help of geographically distributed sensors. The sensors convey signals to the fusion centre using M-ary Frequency Shift Keying (MFSK)modulation scheme over independent Rayleigh fading channels. At the fusion centre, detection takes place with the help of Selection Combining (SC) diversity scheme, which assures a simple and economical receiver circuitry. With the aid of various simulations, the performance and efficacy of the system has been analyzed by varying modulation levels, number of local sensors and probability of correct detection by the sensors. The study endeavors to prove that triple layer WSN system is an economical and dependable system capable of correct detection of M-ary events by integrating frequency diversity together with antenna diversity.Comment: 13 pages; International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.4, July 201

    On Non-coherent MIMO Channels in the Wideband Regime: Capacity and Reliability

    Full text link
    We consider a multiple-input, multiple-output (MIMO) wideband Rayleigh block fading channel where the channel state is unknown to both the transmitter and the receiver and there is only an average power constraint on the input. We compute the capacity and analyze its dependence on coherence length, number of antennas and receive signal-to-noise ratio (SNR) per degree of freedom. We establish conditions on the coherence length and number of antennas for the non-coherent channel to have a "near coherent" performance in the wideband regime. We also propose a signaling scheme that is near-capacity achieving in this regime. We compute the error probability for this wideband non-coherent MIMO channel and study its dependence on SNR, number of transmit and receive antennas and coherence length. We show that error probability decays inversely with coherence length and exponentially with the product of the number of transmit and receive antennas. Moreover, channel outage dominates error probability in the wideband regime. We also show that the critical as well as cut-off rates are much smaller than channel capacity in this regime

    Distributed Nonparametric Sequential Spectrum Sensing under Electromagnetic Interference

    Full text link
    A nonparametric distributed sequential algorithm for quick detection of spectral holes in a Cognitive Radio set up is proposed. Two or more local nodes make decisions and inform the fusion centre (FC) over a reporting Multiple Access Channel (MAC), which then makes the final decision. The local nodes use energy detection and the FC uses mean detection in the presence of fading, heavy-tailed electromagnetic interference (EMI) and outliers. The statistics of the primary signal, channel gain or the EMI is not known. Different nonparametric sequential algorithms are compared to choose appropriate algorithms to be used at the local nodes and the FC. Modification of a recently developed random walk test is selected for the local nodes for energy detection as well as at the fusion centre for mean detection. It is shown via simulations and analysis that the nonparametric distributed algorithm developed performs well in the presence of fading, EMI and is robust to outliers. The algorithm is iterative in nature making the computation and storage requirements minimal.Comment: 8 pages; 6 figures; Version 2 has the proofs for the theorems. Version 3 contains a new section on approximation analysi

    On capacity of fading channels with no channel state information

    No full text
    The rapid development of communication systems with mobile receivers at higher data rates has lead to the importance of studies on information transfer over highly time varying channels. Under such circumstances, the channel variations become fast and the receiver is unable to track the channel during the predefined block length. Here existing results for the channel capacity and the optimal input distribution, under the assumption of knowledge of the channel state information (CSI) are no longer valid. In reality the capacity is significantly reduced in the absence of the CSI at both the transmitter and the receiver. Furthermore, finding the optimal input distribution with no CSI is considered an important problem in information theory. This thesis first considers the important case of Gaussian signalling in both single input single output (SISO) and multiple input multiple output (MIMO) fading channels with no CSI. For such a signalling scheme we develop closed form solutions for the mutual information at any signal to noise ratio (SNR) for any number of antennas. Furthermore, we use these new expressions to identify the bounds at high SNR and particularly the use of optimal antennas at both ends of a communication system. To overcome the existing di±culties in calculating the optimal input and the capacity, a novel approach is shown to identify the key characteristics of the optimal input in non-coherent Rayleigh fading MIMO channels. Unlike most work in the literature, this leads to a capacity upper bound which can be obtained without extensive simulations for any antenna number at any SNR. Furthermore, the capacity is shown numerically, deriving the optimal input distribution for any antenna number using a scaler channel model. In particular, some key properties of the optimal input distribution at low SNR is investigated studying the loss in information transfer due to unknown CSI in MIMO wireless communication systems

    Low-Complexity Joint Channel Estimation and List Decoding of Short Codes

    Get PDF
    A pilot-assisted transmission (PAT) scheme is proposed for short blocklengths, where the pilots are used only to derive an initial channel estimate for the list construction step. The final decision of the message is obtained by applying a non-coherent decoding metric to the codewords composing the list. This allows one to use very few pilots, thus reducing the channel estimation overhead. The method is applied to an ordered statistics decoder for communication over a Rayleigh block-fading channel. Gains of up to 1.21.2 dB as compared to traditional PAT schemes are demonstrated for short codes with QPSK signaling. The approach can be generalized to other list decoders, e.g., to list decoding of polar codes.Comment: Accepted at the 12th International ITG Conference on Systems, Communications and Coding (SCC 2019), Rostock, German

    A novel scheme to aid coherent detection of GMSK signals in fast Rayleigh fading channels

    Get PDF
    A novel scheme to insert carrier pilot to Gaussian Minimum Shift Keying (GMSK) signal using Binary Block Code (BBC) and a highpass filter in baseband is proposed. This allows the signal to be coherently demodulated even in a fast Rayleigh fading environment. As an illustrative example, the scheme is applied to a 16 kb/s GMSK signal, and its performance over a fast Rayleigh fading channel is investigated using computer simulation. This modem's 'irreducible error rate' is found to be Pe = 5.5 x 10(exp -5) which is more than that of differential detection. The modem's performance in Rician fading channel is currently under investigation
    corecore