44 research outputs found

    Average Channel Capacity of Amplify-and-forward MIMO/FSO Systems Over Atmospheric Turbulence Channels

    Get PDF
    In amplify-and-forward (AF) relay channel, when the direct link between source and destination terminals is deeply faded, the signal from the source terminal to the destination terminal propagates through the relay terminals, each of which relays a signal received from the previous terminal to the next terminal in series. This paper, we theoretically analyze the performance of multiple-input multiple-output (MIMO) AF free-space optical (FSO) systems. The AF-MIMO/FSO average channel capacity (ACC), which is expressed in terms of average spectral efficiency (ASE) is derived taking into account the atmospheric turbulence effects on the MIMO/FSO channel. They are modeled by log-normal and the gamma-gamma distributions for the cases of weak-to-strong turbulence conditions. We extract closed form mathematical expression for the evaluation of the ACC and we quantitatively discuss the influence of turbulence strength, link distance, different number of relay stations and different MIMO configurations on it

    Hybrid Free-Space Optical and Visible Light Communication Link

    Get PDF
    V součastnosti bezdrátové optické komunikace (optical wireless communication, OWC) získávají širokou pozornost jako vhodný doplněk ke komunikačním přenosům v rádiovém pásmu. OWC nabízejí několik výhod včetně větší šířky přenosového pásma, neregulovaného frekvenčního pásma či odolnosti vůči elektromagnetickému rušení. Tato práce se zabývá návrhem OWC systémů pro připojení koncových uživatelů. Samotná realizace spojení může být provedena za pomoci různých variant bezdrátových technologií, například pomocí OWC, kombinací různých OWC technologií nebo hybridním rádio-optickým spojem. Za účelem propojení tzv. poslední míle je analyzován optický bezvláknový spoj (free space optics, FSO). Tato práce se dále zabývá analýzou přenosových vlastností celo-optického více skokového spoje s důrazem na vliv atmosférických podmínek. V dnešní době mnoho uživatelů tráví čas ve vnitřních prostorech kanceláří či doma, kde komunikace ve viditelném spektru (visible light communication, VLC) poskytuje lepší přenosové parametry pokrytí než úzce směrové FSO. V rámci této práce byla odvozena a experimentálně ověřena závislost pro bitovou chybovost přesměrovaného (relaying) spoje ve VLC. Pro propojení poskytovatele datavých služeb s koncovým uživatelem může být výhodné zkombinovat více přenosových technologií. Proto je navržen a analyzovám systém pro překonání tzv. problému poslední míle a posledního metru kombinující hybridní FSO a VLC technologie.The field of optical wireless communications (OWC) has recently attracted significant attention as a complementary technology to radio frequency (RF). OWC systems offer several advantages including higher bandwidth, an unregulated spectrum, resistance to electromagnetic interference and a high order of reusability. The thesis focuses on the deployment and analyses of end-user interconnections using the OWC systems. Interconnection can be established by many wireless technologies, for instance, by a single OWC technology, a combination of OWC technologies, or by hybrid OWC/RF links. In order to establish last mile outdoor interconnection, a free-space optical (FSO) has to be investigated. In this thesis, the performance of all-optical multi-hop scenarios is analyzed under atmospheric conditions. However, nowadays, many end users spend much time in indoor environments where visible light communication (VLC) technology can provide better transmission parameters and, significantly, better coverage. An analytical description of bit error rate for relaying VLC schemes is derived and experimentally verified. Nonetheless, for the last mile, interconnection of a provider and end users (joint outdoor and indoor connection) can be advantageous when combining multiple technologies. Therefore, a hybrid FSO/VLC system is proposed and analyzed for the interconnection of the last mile and last meter bottleneck

    Mode division multiplexing in radio-over-free-space-optical system incorporating orthogonal frequency division multiplexing and photonic crystal fiber equalization

    Get PDF
    Radio over free space optics (Ro-FSO) is a revolutionary technology for seamlessly integrating radio and optical networks without expensive optical fiber cabling. RoFSO technology plays a crucial role in supporting broadband connectivity in rural and remote areas where current broadband infrastructure is not feasible due to geographical and economic inconvenience. Although the capacity of Ro-FSO can be increased by mode division multiplexing (MDM), the transmission distance and capacity is still limited by multipath fading and mode coupling losses due to atmospheric turbulences such as light fog, thin fog and heavy fog. The main intention of this thesis is to design MDM system for Ro-FSO for long and short haul communication. Orthogonal frequency division multiplexing (OFDM) is proposed for long haul communication to mitigate multipath fading and Photonic Crystal Fiber (PCF) is proposed for short haul communication to reduce mode coupling losses. The reported results of the proposed scheme for long haul communication show a significant 47% power improvement in deep fades from multipath propagation with the use of OFDM in MDM-Ro-FSO systems as compared to without OFDM. The results of the proposed scheme for short haul communication show 90.6% improvement in power in the dominant mode with the use of PCF in MDM-Ro-FSO as compared to without PCF. The reported results in the thesis show significant improvement in Ro-FSO systems as compared to previous systems in terms of capacity and transmission distance under clear weather conditions as well as under varying levels of fog. The contributions of this thesis are expected to provide seamless broadband services in remote areas

    Modeling and estimation of scattering attenuation and scintillation effects on optical wireless communication systems in South Africa.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Optical wireless communication (OWC) is a viable complementary solution for next-generation communication networks saddled with meeting the great demands of high data rates and fast internet connectivity. Its numerous advantages include: high data throughput; secure transmission; license-free spectrum; relative low cost of deployment; flexible network connectivity; etc. However, OWC system performance is severely degraded by atmospheric conditions such as fog and scintillation. Most of the proposed FSOC and hybrid FSOC systems in the literature are limited in their capacity to predict the extent to which atmospheric disturbances will impact on the performance of FSOC links in each location where they are to be deployed. This is because of the complexities involved in accessing and analyzing the information on the unique meteorological and climatic characteristics of the locations of interest prior to FSOC link deployment. This important information is necessary for determining the fade margin required by FSOC systems to withstand atmospheric disturbances in various locations of deployment. The effects of other atmospheric conditions such as gas absorption, molecular scattering, and aerosol absorption on the transmission wavelengths of interest (850 and 1550 nm) are negligible, and as such, were not considered in this study. This research, therefore, focuses on the investigation and modeling of scattering attenuation and irradiance fluctuations based on the unique climatic peculiarities of nine major cities in each of the provinces of South Africa where OWC links are to be deployed. These cities are Bloemfontein, Cape Town, Durban, Johannesburg, Kimberley, Mafikeng, Mbombela, Polokwane, and Port Elizabeth. Meteorological data of visibility, wind speed, relative humidity, temperature, fractional sunshine, and atmospheric pressure from 1st January 2010 till 30th June 2018, for each of the locations of interest, are statistically processed and used in the investigation, estimation, and modeling of atmospheric phenomena affecting the performance of OWC signals. To achieve this, visibility modeling and prediction for OWC systems are performed using regression analysis. The results obtained show that various simple and multiple linear regression models reliably forecast visibility from other meteorological parameters considered in this study. The model's selection may be influenced not only by its performance but also by the parameters' availability. While caution is taken to avoid model over-specification, multiple linear regression models are preferable over simple regression models. The significance of the results obtained is the validated alternatives the simple and multiple linear regression models provide while saving costs and avoiding the complexities of measuring FSO visibility in the investigated locations. The relationship between atmospheric visibility and aerosol scattering attenuation has been established by various aerosol scattering models based on the Mie scattering theory. This is made possible because the radii of aerosol particles in the atmosphere are approximately equal to the infra-red wavelengths of optical signals. Thus, the cumulative distribution of visibility and aerosol scattering attenuations based on the Ijaz fog and Kim models for transmission wavelengths of 850 and 1550 nm in nine cities in South Africa are presented. The Ijaz fog and Kim models are also used in computing the probabilities of exceedance, deceedance, and encountering of different aerosol scattering attenuations for 850 and 1550 nm. The impact of these specific attenuations on free space optical communication (FSOC) link performance are investigated for all the various locations of interest. The results show that during foggy weather, the optical signals transmitted at 1550 nm encounter more scattering attenuation than those transmitted at the 850 nm wavelength. The reverse is the case during clear weather periods. Modeling of the minimum required visibility cumulative distribution functions (CDF) during foggy and clear weather conditions for both optical wavelengths is also presented. These CDFs are employed in evaluating the FSOC link availabilities in various cities in South Africa

    Ergodic Capacity and Error Performance of Spatial Diversity UWOC Systems over Generalized Gamma Turbulence Channels

    Get PDF
    In this paper, we study the ergodic capacity (EC) and average bit error rate (BER) of spatial diversity underwater wireless optical communications (UWOC) over the generalized gamma (GG) fading channels using quadrature amplitude modulation (QAM) direct current-biased optical orthogonal frequency division multiplexing (DCO-OFDM). We derive closed-form expressions of the EC and BER for the spatial diversity UWOC with the equal gain combining (EGC) at receivers based on the approximation of the sum of independent identical distributed (i.i.d) GG random variables (RVs). Numerical results of EC and BER for QAM DCO-OFDM spatial diversity systems over GG fading channels are presented. The numerical results are shown to be closely matched by the Monte Carlo simulations, verifying the analysis. The study clearly shows the adverse effect of turbulence on the EC & BER and advantage of EGC to overcome the turbulence effect

    Advanced DSP Techniques for High-Capacity and Energy-Efficient Optical Fiber Communications

    Get PDF
    The rapid proliferation of the Internet has been driving communication networks closer and closer to their limits, while available bandwidth is disappearing due to an ever-increasing network load. Over the past decade, optical fiber communication technology has increased per fiber data rate from 10 Tb/s to exceeding 10 Pb/s. The major explosion came after the maturity of coherent detection and advanced digital signal processing (DSP). DSP has played a critical role in accommodating channel impairments mitigation, enabling advanced modulation formats for spectral efficiency transmission and realizing flexible bandwidth. This book aims to explore novel, advanced DSP techniques to enable multi-Tb/s/channel optical transmission to address pressing bandwidth and power-efficiency demands. It provides state-of-the-art advances and future perspectives of DSP as well
    corecore