12 research outputs found

    Policies for Web Services

    Get PDF
    Web services are predominantly used to implement service-oriented architectures (SOA). However, there are several areas such as temporal dimensions, real-time, streaming, or efficient and flexible file transfers where web service functionality should be extended. These extensions can, for example, be achieved by using policies. Since there are often alternative solutions to provide functionality (e.g., different protocols can be used to achieve the transfer of data), the WS-Policy standard is especially useful to extend web services with policies. It allows to create policies to generally state the properties under which a service is provided and to explicitly express alternative properties. To extend the functionality of web services, two policies are introduced in this thesis: the Temporal Policy and the Communication Policy. The temporal policy is the foundation for adding temporal dimensions to a WS-Policy. The temporal policy itself is not a WS-Policy but an independent policy language that describes temporal dimensions of and dependencies between temporal policies and WS-Policies. Switching of protocol dependencies, pricing of services, quality of service, and security are example areas for using a temporal policy. To describe protocol dependencies of a service for streaming, real-time and file transfers, a communication policy can be utilized. The communication policy is a concrete WS-Policy. With the communication policy, a service can expose the protocols it depends on for a communication after its invocation. Thus, a web service client knows the protocols required to support a communication with the service. Therefore, it is possible to evaluate beforehand whether an invocation of a service is reasonable. On top of the newly introduced policies, novel mechanisms and tools are provided to alleviate service use and enable flexible and efficient data handling. Furthermore, the involvement of the end user in the development process can be achieved more easily. The Flex-SwA architecture, the first component in this thesis based on the newly introduced policies, implements the actual file transfers and streaming protocols that are described as dependencies in a communication policy. Several communication patterns support the flexible handling of the communication. A reference concept enables seamless message forwarding with reduced data movement. Based on the Flex-SwA implementation and the communication policy, it is possible to improve usability - especially in the area of service-oriented Grids - by integrating data transfers into an automatically generated web and Grid service client. The Web and Grid Service Browser is introduced in this thesis as such a generic client. It provides a familiar environment for using services by offering the client generation as part of the browser. Data transfers are directly integrated into service invocation without having to perform data transmissions explicitly. For multimedia MIME types, special plugins allow the consumption of multimedia data. To enable an end user to build applications that also leverage high performance computing resources, the Service-enabled Mashup Editor is presented that lets the user combine popular web applications with web and Grid services. Again, the communication policy provides descriptive means for file transfers and Flex-SwAs reference concept is used for data exchange. To show the applicability of these novel concepts, several use cases from the area of multimedia processing have been selected. Based on the temporal policy, the communication policy, Flex-SwA, the Web and Grid Service Browser, and the Service-enabled Mashup Editor, the development of a scalable service-oriented multimedia architecture is presented. The multimedia SOA offers, among others, a face detection workflow, a video-on-demand service, and an audio resynthesis service. More precisely, a video-on-demand service describes its dependency on a multicast protocol by using a communication policy. A temporal policy is then used to perform the description of a protocol switch from one multicast protocol to another one by changing the communication policy at the end of its validity period. The Service-enabled Mashup Editor is used as a client for the new multicast protocol after the multicast protocol has been switched. To stream single frames from a frame decoder service to a face detection service (which are both part of the face detection workflow) and to transfer audio files with the different Flex-SwA communication patterns to an audio resynthesis service, Flex-SwA is used. The invocation of the face detection workflow and the audio resynthesis service is realized with the Web and Grid Service Browser

    Proceedings of the 4th International Conference on Principles and Practices of Programming in Java

    Full text link
    This book contains the proceedings of the 4th international conference on principles and practices of programming in Java. The conference focuses on the different aspects of the Java programming language and its applications

    Acta Universitatis Sapientiae - Electrical and Mechanical Engineering

    Get PDF
    Series Electrical and Mechanical Engineering publishes original papers and surveys in various fields of Electrical and Mechanical Engineering

    Европейский и национальный контексты в научных исследованиях

    Get PDF
    В настоящем электронном сборнике «Европейский и национальный контексты в научных исследованиях. Технология» представлены работы молодых ученых по геодезии и картографии, химической технологии и машиностроению, информационным технологиям, строительству и радиотехнике. Предназначены для работников образования, науки и производства. Будут полезны студентам, магистрантам и аспирантам университетов.=In this Electronic collected materials “National and European dimension in research. Technology” works in the fields of geodesy, chemical technology, mechanical engineering, information technology, civil engineering, and radio-engineering are presented. It is intended for trainers, researchers and professionals. It can be useful for university graduate and post-graduate students

    Technologies and Applications for Big Data Value

    Get PDF
    This open access book explores cutting-edge solutions and best practices for big data and data-driven AI applications for the data-driven economy. It provides the reader with a basis for understanding how technical issues can be overcome to offer real-world solutions to major industrial areas. The book starts with an introductory chapter that provides an overview of the book by positioning the following chapters in terms of their contributions to technology frameworks which are key elements of the Big Data Value Public-Private Partnership and the upcoming Partnership on AI, Data and Robotics. The remainder of the book is then arranged in two parts. The first part “Technologies and Methods” contains horizontal contributions of technologies and methods that enable data value chains to be applied in any sector. The second part “Processes and Applications” details experience reports and lessons from using big data and data-driven approaches in processes and applications. Its chapters are co-authored with industry experts and cover domains including health, law, finance, retail, manufacturing, mobility, and smart cities. Contributions emanate from the Big Data Value Public-Private Partnership and the Big Data Value Association, which have acted as the European data community's nucleus to bring together businesses with leading researchers to harness the value of data to benefit society, business, science, and industry. The book is of interest to two primary audiences, first, undergraduate and postgraduate students and researchers in various fields, including big data, data science, data engineering, and machine learning and AI. Second, practitioners and industry experts engaged in data-driven systems, software design and deployment projects who are interested in employing these advanced methods to address real-world problems

    Performance of Dynamic Resizing of Message Fields for Differential Serialization of SOAP Messages

    No full text
    SOAP is an XML-based protocol that is widely used in Web services and that provides extensibility, portability, flexibility, and descriptiveness. Unfortunately, these attractive characteristics come at the expense of performance, threatening to preclude the use of SOAP for high performance computing. In particular, we have shown in previous work that serialization and deserialization of scientific data are by far the most expensive operations that limit SOAP’s performance. One technique for eliminating this performance bottleneck is differential serialization—saving copies of messages in the sender, and reserializing only the differences between the most recent message and the next one. In this paper, we build on our earlier introduction and investigation of differential serialization by describing improved algorithms for dynamically resizing message fields, which is necessary when newly serialized data requires a different amount of space than the old data occupied. In particular, we describe our implementation of stealing space from neighboring fields, and present a performance study that compares this new technique with others from previous work. Results show that stealing (1) performs better than other techniques for increasing message field size when extra space is limited, and (2) is effective at keeping message sizes from expanding over time, but results in a tradeoff with performance when compared against other approaches that allow message sizes to grow.

    Technologies and Applications for Big Data Value

    Get PDF
    This open access book explores cutting-edge solutions and best practices for big data and data-driven AI applications for the data-driven economy. It provides the reader with a basis for understanding how technical issues can be overcome to offer real-world solutions to major industrial areas. The book starts with an introductory chapter that provides an overview of the book by positioning the following chapters in terms of their contributions to technology frameworks which are key elements of the Big Data Value Public-Private Partnership and the upcoming Partnership on AI, Data and Robotics. The remainder of the book is then arranged in two parts. The first part “Technologies and Methods” contains horizontal contributions of technologies and methods that enable data value chains to be applied in any sector. The second part “Processes and Applications” details experience reports and lessons from using big data and data-driven approaches in processes and applications. Its chapters are co-authored with industry experts and cover domains including health, law, finance, retail, manufacturing, mobility, and smart cities. Contributions emanate from the Big Data Value Public-Private Partnership and the Big Data Value Association, which have acted as the European data community's nucleus to bring together businesses with leading researchers to harness the value of data to benefit society, business, science, and industry. The book is of interest to two primary audiences, first, undergraduate and postgraduate students and researchers in various fields, including big data, data science, data engineering, and machine learning and AI. Second, practitioners and industry experts engaged in data-driven systems, software design and deployment projects who are interested in employing these advanced methods to address real-world problems

    Augmented Reality

    Get PDF
    Augmented Reality (AR) is a natural development from virtual reality (VR), which was developed several decades earlier. AR complements VR in many ways. Due to the advantages of the user being able to see both the real and virtual objects simultaneously, AR is far more intuitive, but it's not completely detached from human factors and other restrictions. AR doesn't consume as much time and effort in the applications because it's not required to construct the entire virtual scene and the environment. In this book, several new and emerging application areas of AR are presented and divided into three sections. The first section contains applications in outdoor and mobile AR, such as construction, restoration, security and surveillance. The second section deals with AR in medical, biological, and human bodies. The third and final section contains a number of new and useful applications in daily living and learning
    corecore