61 research outputs found

    Dynamic Time-domain Duplexing for Self-backhauled Millimeter Wave Cellular Networks

    Full text link
    Millimeter wave (mmW) bands between 30 and 300 GHz have attracted considerable attention for next-generation cellular networks due to vast quantities of available spectrum and the possibility of very high-dimensional antenna ar-rays. However, a key issue in these systems is range: mmW signals are extremely vulnerable to shadowing and poor high-frequency propagation. Multi-hop relaying is therefore a natural technology for such systems to improve cell range and cell edge rates without the addition of wired access points. This paper studies the problem of scheduling for a simple infrastructure cellular relay system where communication between wired base stations and User Equipment follow a hierarchical tree structure through fixed relay nodes. Such a systems builds naturally on existing cellular mmW backhaul by adding mmW in the access links. A key feature of the proposed system is that TDD duplexing selections can be made on a link-by-link basis due to directional isolation from other links. We devise an efficient, greedy algorithm for centralized scheduling that maximizes network utility by jointly optimizing the duplexing schedule and resources allocation for dense, relay-enhanced OFDMA/TDD mmW networks. The proposed algorithm can dynamically adapt to loading, channel conditions and traffic demands. Significant throughput gains and improved resource utilization offered by our algorithm over the static, globally-synchronized TDD patterns are demonstrated through simulations based on empirically-derived channel models at 28 GHz.Comment: IEEE Workshop on Next Generation Backhaul/Fronthaul Networks - BackNets 201

    Integrated Access and Backhaul for 5G and Beyond (6G)

    Get PDF
    Enabling network densification to support coverage-limited millimeter wave (mmWave) frequencies is one of the main requirements for 5G and beyond. It is challenging to connect a high number of base stations (BSs) to the core network via a transport network. Although fiber provides high-rate reliable backhaul links, it requires a noteworthy investment for trenching and installation, and could also take a considerable deployment time. Wireless backhaul, on the other hand, enables fast installation and flexibility, at the cost of data rate and sensitivity to environmental effects. For these reasons, fiber and wireless backhaul have been the dominant backhaul technologies for decades. Integrated access and backhaul (IAB), where along with celluar access services a part of the spectrum available is used to backhaul, is a promising wireless solution for backhauling in 5G and beyond. To this end, in this thesis we evaluate, analyze and optimize IAB networks from various perspectives. Specifically, we analyze IAB networks and develop effective algorithms to improve service coverage probability. In contrast to fiber-connected setups, an IAB network may be affected by, e.g., blockage, tree foliage, and rain loss. Thus, a variety of aspects such as the effects of tree foliage, rain loss, and blocking are evaluated and the network performance when part of the network being non-IAB backhauled is analysed. Furthermore, we evaluate the effect of deployment optimization on the performance of IAB networks.First, in Paper A, we introduce and analyze IAB as an enabler for network densification. Then, we study the IAB network from different aspects of mmWave-based communications: We study the network performance for both urban and rural areas considering the impacts of blockage, tree foliage, and rain. Furthermore, performance comparisons are made between IAB and networks of which all or part of small BSs are fiber-connected. Following the analysis, it is observed that IAB may be a good backhauling solution with high flexibility and low time-to-market. The second part of the thesis focuses on improving the service coverage probability by carrying out topology optimization in IAB networks focusing on mmWave communication for different parameters, such as blockage, tree foliage, and antenna gain. In Paper B, we study topology optimization and routing in IAB networks in different perspectives. Thereby, we design efficient Genetic algorithm (GA)-based methods for IAB node distribution and non-IAB backhaul link placement. Furthermore, we study the effect of routing in the cases with temporal blockages. Finally, we briefly study the recent standardization developments, i.e., 3GPP Rel-16 as well as the\ua0Rel-17 discussions on routing. As the results show, with a proper planning on network deployment, IAB is an attractive solution to densify the networks for 5G and beyond. Finally, we focus on improving the performance of IAB networks with constrained deployment optimization. In Paper C, we consider various IAB network models while presenting different algorithms for constrained deployment optimization. Here, the constraints are coming from either inter-IAB distance limitations or geographical restrictions. As we show, proper network planning can considerably improve service coverage probability of IAB networks with deployment constraints

    Edge Caching in Dense Heterogeneous Cellular Networks with Massive MIMO Aided Self-backhaul

    Get PDF
    This paper focuses on edge caching in dense heterogeneous cellular networks (HetNets), in which small base stations (SBSs) with limited cache size store the popular contents, and massive multiple-input multiple-output (MIMO) aided macro base stations provide wireless self-backhaul when SBSs require the non-cached contents. Our aim is to address the effects of cell load and hit probability on the successful content delivery (SCD), and present the minimum required base station density for avoiding the access overload in an arbitrary small cell and backhaul overload in an arbitrary macrocell. The massive MIMO backhaul achievable rate without downlink channel estimation is derived to calculate the backhaul time, and the latency is also evaluated in such networks. The analytical results confirm that hit probability needs to be appropriately selected, in order to achieve SCD. The interplay between cache size and SCD is explicitly quantified. It is theoretically demonstrated that when non-cached contents are requested, the average delay of the non-cached content delivery could be comparable to the cached content delivery with the help of massive MIMO aided self-backhaul, if the average access rate of cached content delivery is lower than that of self-backhauled content delivery. Simulation results are presented to validate our analysis.Comment: Accepted to appear in IEEE Transactions on Wireless Communication

    On Integrated Access and Backhaul Networks: Current Status and Potentials

    Get PDF
    In this paper, we introduce and study the potentials and challenges of integrated access and backhaul (IAB) as one of the promising techniques for evolving 5G networks. We study IAB networks from different perspectives. We summarize the recent Rel-16 as well as the upcoming Rel-17 3GPP discussions on IAB, and highlight the main IAB-specific agreements on different protocol layers. Also, concentrating on millimeter wave-based communications, we evaluate the performance of IAB networks in both dense and suburban areas. Using a finite stochastic geometry model, with random distributions of IAB nodes as well as user equipments (UEs) in a finite region, we study the service coverage rate defined as the probability of the event that the UEs' minimum rate requirements are satisfied. We present comparisons between IAB and hybrid IAB/fiber-backhauled networks where a part or all of the small base stations are fiber-connected. Finally, we study the robustness of IAB networks to weather and various deployment conditions and verify their effects, such as blockage, tree foliage, rain as well as antenna height/gain on the coverage rate of IAB setups, as the key differences between the fiber-connected and IAB networks. As we show, IAB is an attractive approach to enable the network densification required by 5G and beyond.Comment: Revised manuscript in IEEE Open Journal of the Communications Societ

    On Topology Optimization and Routing in Integrated Access and Backhaul Networks: A Genetic Algorithm-Based Approach

    Get PDF
    In this paper, we study the problem of topology optimization and routing in integrated access and backhaul (IAB) networks, as one of the promising techniques for evolving 5G networks. We study the problem from different perspectives. We develop efficient genetic algorithm-based schemes for both IAB node placement and non-IAB backhaul link distribution, and evaluate the effect of routing on bypassing temporal blockages. Here, concentrating on millimeter wave-based communications, we study the service coverage probability, defined as the probability of the event that the user equipments\u27 (UEs) minimum rate requirements are satisfied. Moreover, we study the effect of different parameters such as the antenna gain, blockage, and tree foliage on the system performance. Finally, we summarize the recent Rel-16 as well as the upcoming Rel-17 3GPP discussions on routing in IAB networks, and discuss the main challenges for enabling mesh-based IAB networks. As we show, with a proper network topology, IAB is an attractive approach to enable the network densification required by 5G and beyond
    corecore