4,213 research outputs found

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    LogBase: A Scalable Log-structured Database System in the Cloud

    Full text link
    Numerous applications such as financial transactions (e.g., stock trading) are write-heavy in nature. The shift from reads to writes in web applications has also been accelerating in recent years. Write-ahead-logging is a common approach for providing recovery capability while improving performance in most storage systems. However, the separation of log and application data incurs write overheads observed in write-heavy environments and hence adversely affects the write throughput and recovery time in the system. In this paper, we introduce LogBase - a scalable log-structured database system that adopts log-only storage for removing the write bottleneck and supporting fast system recovery. LogBase is designed to be dynamically deployed on commodity clusters to take advantage of elastic scaling property of cloud environments. LogBase provides in-memory multiversion indexes for supporting efficient access to data maintained in the log. LogBase also supports transactions that bundle read and write operations spanning across multiple records. We implemented the proposed system and compared it with HBase and a disk-based log-structured record-oriented system modeled after RAMCloud. The experimental results show that LogBase is able to provide sustained write throughput, efficient data access out of the cache, and effective system recovery.Comment: VLDB201

    Algorithms for Extracting Frequent Episodes in the Process of Temporal Data Mining

    Get PDF
    An important aspect in the data mining process is the discovery of patterns having a great influence on the studied problem. The purpose of this paper is to study the frequent episodes data mining through the use of parallel pattern discovery algorithms. Parallel pattern discovery algorithms offer better performance and scalability, so they are of a great interest for the data mining research community. In the following, there will be highlighted some parallel and distributed frequent pattern mining algorithms on various platforms and it will also be presented a comparative study of their main features. The study takes into account the new possibilities that arise along with the emerging novel Compute Unified Device Architecture from the latest generation of graphics processing units. Based on their high performance, low cost and the increasing number of features offered, GPU processors are viable solutions for an optimal implementation of frequent pattern mining algorithmsFrequent Pattern Mining, Parallel Computing, Dynamic Load Balancing, Temporal Data Mining, CUDA, GPU, Fermi, Thread

    On the use of NAND flash memory in high-performance relational databases

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 47-49).High-density NAND flash storage has become relatively inexpensive due to the popularity of various consumer electronics. Recently, several manufacturers have released IDE-compatible NAND flash-based drives in sizes up to 64 GB at reasonable (sub-$1000) prices. Because flash is significantly more durable than mechanical hard drives and requires considerably less energy, there is some speculation that large data centers will adopt these devices. As database workloads make up a substantial fraction of the processing done by data centers, it is interesting to ask how switching to flash-based storage will affect the performance of database systems. We evaluate this question using IDE-based flash drives from two major manufacturers. We measure their read and write performance and find that flash has excellent random read performance, acceptable sequential read performance, and quite poor write performance compared to conventional IDE disks. We then consider how standard database algorithms are affected by these performance characteristics and find that the fast random read capability dramatically improves the performance of secondary indexes and index-based join algorithms. We next investigate using logstructured filesystems to mitigate the poor write performance of flash and find an 8.2x improvement in random write performance, but at the cost of a 3.7x decrease in random read performance. Finally, we study techniques for exploiting the inherent parallelism of multiple-chip flash devices, and we find that adaptive coding strategies can yield a 2x performance improvement over static ones. We conclude that in many cases flash disk performance is still worse than on traditional drives and that current flash technology may not yet be mature enough for widespread database adoption if performance is a dominant factor. Finally, we briefly speculate how this landscape may change based on expected performance of next-generation flash memories.by Daniel Myers.S.M
    corecore