474 research outputs found

    An Energy Efficient Semi-static Power Control and Link Adaptation Scheme in UMTS HSDPA

    Get PDF
    High speed downlink packet access (HSDPA) has been successfully applied in commercial systems and improves user experience significantly. However, it incurs substantial energy consumption. In this paper, we address this issue by proposing a novel energy efficient semi-static power control and link adaptation scheme in HSDPA. Through estimating the EE under different modulation and coding schemes (MCSs) and corresponding transmit power, the proposed scheme can determine the most energy efficient MCS level and transmit power at the Node B. And then the Node B configure the optimal MCS level and transmit power. In order to decrease the signaling overhead caused by the configuration, a dual trigger mechanism is employed. After that, we extend the proposed scheme to the multiple input multiple output (MIMO) scenarios. Simulation results confirm the significant EE improvement of our proposed scheme. Finally, we give a discussion on the potential EE gain and challenge of the energy efficient mode switching between single input multiple output (SIMO) and MIMO configuration in HSDPA.Comment: 9 pages, 11 figures, accepted in EURASIP Journal on Wireless Communications and Networking, special issue on Green Radi

    IST-2000-30148 I-METRA: D6.2 Implications in re-configurable systems beyond 3G (Part 2)

    Get PDF
    This activity evaluates the extension of the bandwidth of the UTRA MIMO HSDPA concept to 20 MHz, which is precisely the bandwidth of HIPERLAN/2. This would allow a fair comparison between the performance of UTRA MIMO HSDPA and the enhanced HIPERLAN/2. The bandwidth expansion would be the consequence of multiplying the chip rate of the W-CDMA spreading by four, i.e., 3.84 x 4 = 15.36 Mcps. A higher bandwidth MIMO channel model is necessary and this will be developed based on the channel model already developed in WP2. High data rates are required to satisfy the ever-increasing application requirements in future wireless communication systems. Recent investigations have indicated that a peak data rate of up to 20Mbps per user in the DL may be required for satisfactory reception of bursty traffic. As the transmission powers (of both mobile terminals and base stations) are limited, higher data rates lead to the reduction of the effective coverage area of a cell. That is, only users that are close to the base station will be able to communicate with high data rates, while users far away from the base station will only be able to use low data rates.Preprin

    Comparison of Picocell and DAS Configuration with HSPA Evolution

    Get PDF
    As demand of mobile data services has grown exponentially, it has increased pressure on mobile operators to enhance capacity in dense urban areas. Usage of internet and services related to mobile network has grown up. UMTS specification has been updated in order to cope with an increased amount of mobile data traffic. These upgrades and releases are based on international standards. HSDPA and HSUPA technologies are previous upgrades of UMTS network but now HSPA Evolution (HSPA+) is the upgraded version for UMTS. HSPA+ improves performance of mobile data transmission in downlink direction. Previously UMTS enabled user data of 384 kbps that was upgraded to 14.4 Mbps in downlink and 5.76 Mbps in uplink data rate by HSPA. But still the demand of data rate is increasing so HSPA+ upgraded UMTS to 21.1 Mbps in downlink and 5.76 Mbps in uplink. Due to these improvements in data rates, HSPA+ has become one of the striking choices for mobile operators. It has been forecasted that amount of data users will increase in future and this will set new challenges for mobile operators. The network is planned in such a way that more capacity is provided to places where more users are present. Most of the network traffic in dense urban area is generated by indoor users. Indoor planning is mostly done with multiple picocells or DAS configuration. The main differences between these two configurations are interference, total capacity, cost of the equipment and implementation. In this Master’s thesis, the main focus is to compare picocells and DAS configuration for HSPA+ by simulations and measurements. Several mobile terminals were used to generate low and high loads for HSPA+ network. These comparisons were made by analyzing the results for signal to interference ratio, total network throughput and several other indicators. The results showed that DAS outperforms picocells in low/high load conditions in terms of SIR, cell throughput and modulation technique. DAS is good choice for medium sized building due to handover free regions and smooth coverage. /Kir1

    Indoor Planning in Broadband Cellular Radio Networks

    Get PDF
    The capacity requirements of cellular networks continue to grow. This has forced cellular operators to seek new ways of improving the availability and transmission rate experienced by users. The majority of cellular network data users are located inside buildings, where coverage is difficult to ensure due to high penetration loss. Indoor users also cause high load to outdoor networks, reducing the quality and availability for outdoor users. This has given rise to a growing need for implementing dedicated indoor systems, and further optimizing their performance to provide high capacity. It was estimated that in 2011 there were 5.37 billion mobile subscriptions in 3GPP-supported GSM, UMTS/HSPA and LTE networks, of which 890.7 million were using UMTS/HSPA. Currently, UMTS is the leading standard for providing mobile broadband, although LTE is becoming increasingly popular. The planning of radio networks is well known and documented. However, the planning and optimization of indoor networks has not been widely studied, although clear improvements in both coverage and capacity can be achieved by optimizing cell- and antenna line configuration. This thesis considers the special characteristics of the indoor environment with regard to radio propagation and radio network planning. The aspects of radio network planning are highlighted especially for WCDMA radio access technology. The target is to provide guidelines for indoor radio network planning and optimization using an outdoor-to-indoor repeater or a dedicated indoor system with various antenna and cell configurations. The studies conducted here are intended to provide better understanding of the indoor functionality and planning of WCDMA radio access, and UMTS cellular system including the latest HSPA updates. The studies show that the indoor performance of a high data rate WCDMA system can be improved by increasing the antenna density in the distributed antenna system, or by utilizing uplink diversity reception. It is also shown how system capacity can be further improved by adding more indoor cells to a single building. The inter-cell interference is analyzed, and the limits for cell densification are discussed. The results show that compared to dedicated indoor systems, similar indoor performance can be provided by extending macrocellular coverage inside buildings using an outdoor-to-indoor repeater. However, good performance of repeater implementation needs careful repeater antenna line and parameter configuration. Nevertheless, capacity is in any case borrowed from an outdoor mother cell. Sharing frequencies between outdoor and indoor systems is often necessary due to high capacity demand and limited available frequency band. A co-channel indoor system was measured to affect both uplink and downlink performance of an outdoor cell. In the uplink, a clear increase in uplink intercell interference was observed. Throughput degradation was also measured in downlink, but the affect is limited to the area close to the indoor system. However, the added high capacity of an indoor network usually justifies performance degradation. The results can help mobile operators design their networks to provide better coverage, higher capacity and better quality for indoor users. After taking into account the implementation costs, the results also help operators to reach a techno-economic trade-off between the various deployment options

    Influence of Intercell Interference on HSDPA Indoor Networks

    Get PDF
    Nowadays the high demand of data based services has become one of the key issues in the telecommunications sphere. Mobile cellular networks are thus willing to provide the necessary capacity that this growth demands. While new third generation specifications keep on improving the HSPA and HSPA+ features, a parallel trend trying to provide enough indoor capacity is taking place. The performance of indoor dedicated systems is highly dependent on the interference present in the network. In this Thesis, the impact of intercell interference on indoor networks is studied. For that purpose, two different measurement campaigns were accomplished in Tampere University of Technology's Tietotalo building. The first of them was held in two small rooms, where picocells and distributed antenna systems (DAS) solutions were tested. The second campaign took place inside a large lecture hall representing an indoor open area, and here diverse picocell layouts were deployed. Analysis took into account interference indicators like signal-to-interference ratio and Ec/N0, and link adaptation parameters like CQI, modulation usage and transport block size. This Thesis provides guidelines for indoor planning. It demonstrates that in small rooms, given a fixed number of cells per room, picocells and DAS solutions show similar performance, so picocells are a better option since they require fewer components such as antennas. High-density cell layouts provide higher system TP, but the maximum system TP achievable is dramatically limited by interference. This Thesis also proofs that, in open areas, multicell layouts can give only a marginal increase in system TP with respect to one-cell layouts, and thus multicell configurations are not always needed to be deployed. High-interference regions need to be identified and cleverly located since they degrade the overall system performance and users in those areas experience unbearable low data rates. /Kir1

    Energy Efficient Evolution of Mobile Broadband Networks

    Get PDF

    MBMS—IP Multicast/Broadcast in 3G Networks

    Get PDF
    In this article, the Multimedia Broadcast and Multicast Service (MBMS) as standardized in 3GPP is presented. With MBMS, multicast and broadcast capabilities are introduced into cellular networks. After an introduction into MBMS technology, MBMS radio bearer realizations are presented. Different MBMS bearer services like broadcast mode, enhanced broadcast mode and multicast mode are discussed. Streaming and download services over MBMS are presented and supported media codecs are listed. Service layer components as defined in Open Mobile Alliance (OMA) are introduced. For a Mobile TV use case capacity improvements achieved by MBMS are shown. Finally, evolution of MBMS as part of 3GPP standardization is presented

    IST-2000-30148 I-METRA: D6.1 Implications in re-configurable systems beyond 3G (Part 1)

    Get PDF
    In this activity MIMO HSDPA is evaluated as the UMTS evolution that could allow a combination of high bit rate services, coverage and mobility with a good trade-off between cost and performance. This evaluation requires the definition of an objective framework for comparison between competing air interface technologies for Systems beyond 3G, and should be carried out in cooperation with other IST projects. The deliverable is complemented by analytically assessing channel capacity in flat Rician- and Rayleigh fading when ideal proportional fast scheduling, optimal rate adaptation, and various transmit diversity techniques are used.Preprin
    • …
    corecore