2,682 research outputs found

    A unified joint reconstruction approach in structured illumination microscopy using unknown speckle patterns

    Full text link
    The structured illumination microscopy using unknown speckle patterns has shown the capacity to surpass the Abbe's diffraction barrier, giving the possibility to design cheap and versatile SIM devices. However, the state-of-the-art joint reconstruction methods in this framework has a relatively low contrast in super-resolution part in comparison to conventional SIM and the hyper-parameter is not easy to tune. In this paper, a unified joint reconstruction approach is proposed with the hyper-parameter proportional to the noise level. Different regularization terms could be evaluated under the same model. Moreover, the degradation entailed by out-of-focus light could be solved in speckle illumination setup easily.Comment: 11 page

    A novel super resolution reconstruction of low reoslution images progressively using dct and zonal filter based denoising

    Full text link
    Due to the factors like processing power limitations and channel capabilities images are often down sampled and transmitted at low bit rates resulting in a low resolution compressed image. High resolution images can be reconstructed from several blurred, noisy and down sampled low resolution images using a computational process know as super resolution reconstruction. Super-resolution is the process of combining multiple aliased low-quality images to produce a high resolution, high-quality image. The problem of recovering a high resolution image progressively from a sequence of low resolution compressed images is considered. In this paper we propose a novel DCT based progressive image display algorithm by stressing on the encoding and decoding process. At the encoder we consider a set of low resolution images which are corrupted by additive white Gaussian noise and motion blur. The low resolution images are compressed using 8 by 8 blocks DCT and noise is filtered using our proposed novel zonal filter. Multiframe fusion is performed in order to obtain a single noise free image. At the decoder the image is reconstructed progressively by transmitting the coarser image first followed by the detail image. And finally a super resolution image is reconstructed by applying our proposed novel adaptive interpolation technique. We have performed both objective and subjective analysis of the reconstructed image, and the resultant image has better super resolution factor, and a higher ISNR and PSNR. A comparative study done with Iterative Back Projection (IBP) and Projection on to Convex Sets (POCS),Papoulis Grechberg, FFT based Super resolution Reconstruction shows that our method has out performed the previous contributions.Comment: 20 pages, 11 figure

    Image Reconstruction with Predictive Filter Flow

    Full text link
    We propose a simple, interpretable framework for solving a wide range of image reconstruction problems such as denoising and deconvolution. Given a corrupted input image, the model synthesizes a spatially varying linear filter which, when applied to the input image, reconstructs the desired output. The model parameters are learned using supervised or self-supervised training. We test this model on three tasks: non-uniform motion blur removal, lossy-compression artifact reduction and single image super resolution. We demonstrate that our model substantially outperforms state-of-the-art methods on all these tasks and is significantly faster than optimization-based approaches to deconvolution. Unlike models that directly predict output pixel values, the predicted filter flow is controllable and interpretable, which we demonstrate by visualizing the space of predicted filters for different tasks.Comment: https://www.ics.uci.edu/~skong2/pff.htm

    Blind Deconvolution Microscopy Using Cycle Consistent CNN with Explicit PSF Layer

    Full text link
    Deconvolution microscopy has been extensively used to improve the resolution of the widefield fluorescent microscopy. Conventional approaches, which usually require the point spread function (PSF) measurement or blind estimation, are however computationally expensive. Recently, CNN based approaches have been explored as a fast and high performance alternative. In this paper, we present a novel unsupervised deep neural network for blind deconvolution based on cycle consistency and PSF modeling layers. In contrast to the recent CNN approaches for similar problem, the explicit PSF modeling layers improve the robustness of the algorithm. Experimental results confirm the efficacy of the algorithm

    Motion Deblurring for Plenoptic Images

    Full text link
    We address for the first time the issue of motion blur in light field images captured from plenoptic cameras. We propose a solution to the estimation of a sharp high resolution scene radiance given a blurry light field image, when the motion blur point spread function is unknown, i.e., the so-called blind deconvolution problem. In a plenoptic camera, the spatial sampling in each view is not only decimated but also defocused. Consequently, current blind deconvolution approaches for traditional cameras are not applicable. Due to the complexity of the imaging model, we investigate first the case of uniform (shift-invariant) blur of Lambertian objects, i.e., when objects are sufficiently far away from the camera to be approximately invariant to depth changes and their reflectance does not vary with the viewing direction. We introduce a highly parallelizable model for light field motion blur that is computationally and memory efficient. We then adapt a regularized blind deconvolution approach to our model and demonstrate its performance on both synthetic and real light field data. Our method handles practical issues in real cameras such as radial distortion correction and alignment within an energy minimization framework

    Robust Statistics for Image Deconvolution

    Full text link
    We present a blind multiframe image-deconvolution method based on robust statistics. The usual shortcomings of iterative optimization of the likelihood function are alleviated by minimizing the M-scale of the residuals, which achieves more uniform convergence across the image. We focus on the deconvolution of astronomical images, which are among the most challenging due to their huge dynamic ranges and the frequent presence of large noise-dominated regions in the images. We show that high-quality image reconstruction is possible even in super-resolution and without the use of traditional regularization terms. Using a robust \r{ho}-function is straightforward to implement in a streaming setting and, hence our method is applicable to the large volumes of astronomy images. The power of our method is demonstrated on observations from the Sloan Digital Sky Survey (Stripe 82) and we briefly discuss the feasibility of a pipeline based on Graphical Processing Units for the next generation of telescope surveys

    Fast Single Image Super-Resolution

    Full text link
    This paper addresses the problem of single image super-resolution (SR), which consists of recovering a high resolution image from its blurred, decimated and noisy version. The existing algorithms for single image SR use different strategies to handle the decimation and blurring operators. In addition to the traditional first-order gradient methods, recent techniques investigate splitting-based methods dividing the SR problem into up-sampling and deconvolution steps that can be easily solved. Instead of following this splitting strategy, we propose to deal with the decimation and blurring operators simultaneously by taking advantage of their particular properties in the frequency domain, leading to a new fast SR approach. Specifically, an analytical solution can be obtained and implemented efficiently for the Gaussian prior or any other regularization that can be formulated into an β„“2\ell_2-regularized quadratic model, i.e., an β„“2\ell_2-β„“2\ell_2 optimization problem. Furthermore, the flexibility of the proposed SR scheme is shown through the use of various priors/regularizations, ranging from generic image priors to learning-based approaches. In the case of non-Gaussian priors, we show how the analytical solution derived from the Gaussian case can be embedded intotraditional splitting frameworks, allowing the computation cost of existing algorithms to be decreased significantly. Simulation results conducted on several images with different priors illustrate the effectiveness of our fast SR approach compared with the existing techniques

    Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections

    Full text link
    Image restoration, including image denoising, super resolution, inpainting, and so on, is a well-studied problem in computer vision and image processing, as well as a test bed for low-level image modeling algorithms. In this work, we propose a very deep fully convolutional auto-encoder network for image restoration, which is a encoding-decoding framework with symmetric convolutional-deconvolutional layers. In other words, the network is composed of multiple layers of convolution and de-convolution operators, learning end-to-end mappings from corrupted images to the original ones. The convolutional layers capture the abstraction of image contents while eliminating corruptions. Deconvolutional layers have the capability to upsample the feature maps and recover the image details. To deal with the problem that deeper networks tend to be more difficult to train, we propose to symmetrically link convolutional and deconvolutional layers with skip-layer connections, with which the training converges much faster and attains better results.Comment: 17 pages. A journal extension of the version at arXiv:1603.0905

    Randomized Aperture Imaging

    Full text link
    Speckled images of a binary broad band light source (600-670 nm), generated by randomized reflections or transmissions, were used to reconstruct a binary image by use of multi-frame blind deconvolution algorithms. Craft store glitter was used as reflective elements. Another experiment used perforated foil. Also reported here are numerical models that afforded controlled tip-tilt and piston aberrations. These results suggest the potential importance of a poorly figured, randomly varying segmented imaging system.Comment: 10 pages, 9 figures, draft for OSA journa

    Image Restoration using Autoencoding Priors

    Full text link
    We propose to leverage denoising autoencoder networks as priors to address image restoration problems. We build on the key observation that the output of an optimal denoising autoencoder is a local mean of the true data density, and the autoencoder error (the difference between the output and input of the trained autoencoder) is a mean shift vector. We use the magnitude of this mean shift vector, that is, the distance to the local mean, as the negative log likelihood of our natural image prior. For image restoration, we maximize the likelihood using gradient descent by backpropagating the autoencoder error. A key advantage of our approach is that we do not need to train separate networks for different image restoration tasks, such as non-blind deconvolution with different kernels, or super-resolution at different magnification factors. We demonstrate state of the art results for non-blind deconvolution and super-resolution using the same autoencoding prior
    • …
    corecore