6,511 research outputs found

    Service level agreement framework for differentiated survivability in GMPLS-based IP-over-optical networks

    Get PDF
    In the next generation optical internet, GMPLS based IP-over-optical networks, ISPs will be required to support a wide variety of applications each having their own requirements. These requirements are contracted by means of the SLA. This paper describes a recovery framework that may be included in the SLA contract between ISP and customers in order to provide the required level of survivability. A key concern with such a recovery framework is how to present the different survivability alternatives including recovery techniques, failure scenario and layered integration into a transparent manner for customers. In this paper, two issues are investigated. First, the performance of the recovery framework when applying a proposed mapping procedure as an admission control mechanism in the edge router considering a smart-edge simple-core GMPLS-based IP/WDM network is considered. The second issue pertains to the performance of a pre-allocated restoration and its ability to provide protected connections under different failure scenarios

    A systematic analysis of equivalence in multistage networks

    Get PDF
    Many approaches to switching in optoelectronic and optical networks decompose the switching function across multiple stages or hops. This paper addresses the problem of determining whether two multistage or multihop networks are functionally equivalent. Various ad-hoc methods have been used in the past to establish such equivalences. A systematic method for determining equivalence is presented based on properties of the link permutations used to interconnect stages of the network. This method is useful in laying out multistage networks, in determining optimal channel assignments for multihop networks, and in establishing the routing required in such networks. A purely graphical variant of the method, requiring no mathematics or calculations, is also described

    Intelligent Management and Efficient Operation of Big Data

    Get PDF
    This chapter details how Big Data can be used and implemented in networking and computing infrastructures. Specifically, it addresses three main aspects: the timely extraction of relevant knowledge from heterogeneous, and very often unstructured large data sources, the enhancement on the performance of processing and networking (cloud) infrastructures that are the most important foundational pillars of Big Data applications or services, and novel ways to efficiently manage network infrastructures with high-level composed policies for supporting the transmission of large amounts of data with distinct requisites (video vs. non-video). A case study involving an intelligent management solution to route data traffic with diverse requirements in a wide area Internet Exchange Point is presented, discussed in the context of Big Data, and evaluated.Comment: In book Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, IGI Global, 201
    • …
    corecore