104 research outputs found

    AMRA: An Adaptive Mesh Refinement Hydrodynamic Code for Astrophysics

    Get PDF
    Implementation details and test cases of a newly developed hydrodynamic code, AMRA, are presented. The numerical scheme exploits the adaptive mesh refinement technique coupled to modern high-resolution schemes which are suitable for relativistic and non-relativistic flows. Various physical processes are incorporated using the operator splitting approach, and include self-gravity, nuclear burning, physical viscosity, implicit and explicit schemes for conductive transport, simplified photoionization, and radiative losses from an optically thin plasma. Several aspects related to the accuracy and stability of the scheme are discussed in the context of hydrodynamic and astrophysical flows.Comment: 41 pages, 21 figures (9 low-resolution), LaTeX, requires elsart.cls, submitted to Comp. Phys. Comm.; additional documentation and high-resolution figures available from http://www.camk.edu.pl/~tomek/AMRA/index.htm

    Supernova 1987A: a Template to Link Supernovae to their Remnants

    Get PDF
    The emission of supernova remnants reflects the properties of both the progenitor supernovae and the surrounding environment. The complex morphology of the remnants, however, hampers the disentanglement of the two contributions. Here we aim at identifying the imprint of SN 1987A on the X-ray emission of its remnant and at constraining the structure of the environment surrounding the supernova. We performed high-resolution hydrodynamic simulations describing SN 1987A soon after the core-collapse and the following three-dimensional expansion of its remnant between days 1 and 15000 after the supernova. We demonstrated that the physical model reproducing the main observables of SN 1987A during the first 250 days of evolution reproduces also the X-ray emission of the subsequent expanding remnant, thus bridging the gap between supernovae and supernova remnants. By comparing model results with observations, we constrained the explosion energy in the range 1.21.4×10511.2-1.4\times 10^{51}~erg and the envelope mass in the range 1517M15-17 M_{\odot}. We found that the shape of X-ray lightcurves and spectra at early epochs (<15 years) reflects the structure of outer ejecta: our model reproduces the observations if the outermost ejecta have a post-explosion radial profile of density approximated by a power law with index α=8\alpha = -8. At later epochs, the shapes of X-ray lightcurves and spectra reflect the density structure of the nebula around SN 1987A. This enabled us to ascertain the origin of the multi-thermal X-ray emission, to disentangle the imprint of the supernova on the remnant emission from the effects of the remnant interaction with the environment, and to constrain the pre-supernova structure of the nebula.Comment: 16 pages, 11 Figures; accepted for publication on Ap

    Dwarf Galaxies with Ionizing Radiation Feedback. I: Escape of Ionizing Photons

    Full text link
    We describe a new method for simulating ionizing radiation and supernova feedback in the analogues of low-redshift galactic disks. In this method, which we call star-forming molecular cloud (SFMC) particles, we use a ray-tracing technique to solve the radiative transfer equation for ultraviolet photons emitted by thousands of distinct particles on the fly. Joined with high numerical resolution of 3.8 pc, the realistic description of stellar feedback helps to self-regulate star formation. This new feedback scheme also enables us to study the escape of ionizing photons from star-forming clumps and from a galaxy, and to examine the evolving environment of star-forming gas clumps. By simulating a galactic disk in a halo of 2.3e11 Msun, we find that the average escape fraction from all radiating sources on the spiral arms (excluding the central 2.5 kpc) fluctuates between 0.08% and 5.9% during a ~20 Myr period with a mean value of 1.1%. The flux of escaped photons from these sources is not strongly beamed, but manifests a large opening angle of more than 60 degree from the galactic pole. Further, we investigate the escape fraction per SFMC particle, f_esc(i), and how it evolves as the particle ages. We discover that the average escape fraction f_esc is dominated by a small number of SFMC particles with high f_esc(i). On average, the escape fraction from a SFMC particle rises from 0.27% at its birth to 2.1% at the end of a particle lifetime, 6 Myrs. This is because SFMC particles drift away from the dense gas clumps in which they were born, and because the gas around the star-forming clumps is dispersed by ionizing radiation and supernova feedback. The framework established in this study brings deeper insight into the physics of photon escape fraction from an individual star-forming clump, and from a galactic disk.Comment: 15 pages, 12 figures, Accepted for publication in the Astrophysical Journal, Image resolution reduced, High-resolution version of this article is available at http://www.jihoonkim.org/index/research.html#sfm
    corecore