2,188 research outputs found

    "Graph Entropy, Network Coding and Guessing games"

    Get PDF
    We introduce the (private) entropy of a directed graph (in a new network coding sense) as well as a number of related concepts. We show that the entropy of a directed graph is identical to its guessing number and can be bounded from below with the number of vertices minus the size of the graph’s shortest index code. We show that the Network Coding solvability of each speciïŹc multiple unicast network is completely determined by the entropy (as well as by the shortest index code) of the directed graph that occur by identifying each source node with each corresponding target node. Shannon’s information inequalities can be used to calculate up- per bounds on a graph’s entropy as well as calculating the size of the minimal index code. Recently, a number of new families of so-called non-shannon-type information inequalities have been discovered. It has been shown that there exist communication networks with a ca- pacity strictly ess than required for solvability, but where this fact cannot be derived using Shannon’s classical information inequalities. Based on this result we show that there exist graphs with an entropy that cannot be calculated using only Shannon’s classical information inequalities, and show that better estimate can be obtained by use of certain non-shannon-type information inequalities

    Throughput-Optimal Multihop Broadcast on Directed Acyclic Wireless Networks

    Get PDF
    We study the problem of efficiently broadcasting packets in multi-hop wireless networks. At each time slot the network controller activates a set of non-interfering links and forwards selected copies of packets on each activated link. A packet is considered jointly received only when all nodes in the network have obtained a copy of it. The maximum rate of jointly received packets is referred to as the broadcast capacity of the network. Existing policies achieve the broadcast capacity by balancing traffic over a set of spanning trees, which are difficult to maintain in a large and time-varying wireless network. We propose a new dynamic algorithm that achieves the broadcast capacity when the underlying network topology is a directed acyclic graph (DAG). This algorithm is decentralized, utilizes local queue-length information only and does not require the use of global topological structures such as spanning trees. The principal technical challenge inherent in the problem is the absence of work-conservation principle due to the duplication of packets, which renders traditional queuing modelling inapplicable. We overcome this difficulty by studying relative packet deficits and imposing in-order delivery constraints to every node in the network. Although in-order packet delivery, in general, leads to degraded throughput in graphs with cycles, we show that it is throughput optimal in DAGs and can be exploited to simplify the design and analysis of optimal algorithms. Our characterization leads to a polynomial time algorithm for computing the broadcast capacity of any wireless DAG under the primary interference constraints. Additionally, we propose an extension of our algorithm which can be effectively used for broadcasting in any network with arbitrary topology

    On the flow-level stability of data networks without congestion control: the case of linear networks and upstream trees

    Full text link
    In this paper, flow models of networks without congestion control are considered. Users generate data transfers according to some Poisson processes and transmit corresponding packet at a fixed rate equal to their access rate until the entire document is received at the destination; some erasure codes are used to make the transmission robust to packet losses. We study the stability of the stochastic process representing the number of active flows in two particular cases: linear networks and upstream trees. For the case of linear networks, we notably use fluid limits and an interesting phenomenon of "time scale separation" occurs. Bounds on the stability region of linear networks are given. For the case of upstream trees, underlying monotonic properties are used. Finally, the asymptotic stability of those processes is analyzed when the access rate of the users decreases to 0. An appropriate scaling is introduced and used to prove that the stability region of those networks is asymptotically maximized

    Distributed Storage in Wireless Sensor Networks with Network Coding

    Get PDF

    Advances in Learning Bayesian Networks of Bounded Treewidth

    Full text link
    This work presents novel algorithms for learning Bayesian network structures with bounded treewidth. Both exact and approximate methods are developed. The exact method combines mixed-integer linear programming formulations for structure learning and treewidth computation. The approximate method consists in uniformly sampling kk-trees (maximal graphs of treewidth kk), and subsequently selecting, exactly or approximately, the best structure whose moral graph is a subgraph of that kk-tree. Some properties of these methods are discussed and proven. The approaches are empirically compared to each other and to a state-of-the-art method for learning bounded treewidth structures on a collection of public data sets with up to 100 variables. The experiments show that our exact algorithm outperforms the state of the art, and that the approximate approach is fairly accurate.Comment: 23 pages, 2 figures, 3 table

    Structural Agnostic Modeling: Adversarial Learning of Causal Graphs

    Full text link
    A new causal discovery method, Structural Agnostic Modeling (SAM), is presented in this paper. Leveraging both conditional independencies and distributional asymmetries in the data, SAM aims at recovering full causal models from continuous observational data along a multivariate non-parametric setting. The approach is based on a game between dd players estimating each variable distribution conditionally to the others as a neural net, and an adversary aimed at discriminating the overall joint conditional distribution, and that of the original data. An original learning criterion combining distribution estimation, sparsity and acyclicity constraints is used to enforce the end-to-end optimization of the graph structure and parameters through stochastic gradient descent. Besides the theoretical analysis of the approach in the large sample limit, SAM is extensively experimentally validated on synthetic and real data
    • 

    corecore