1,625 research outputs found

    Insights into the Design of Congestion Control Protocols for Multi-Hop Wireless Mesh Networks

    Get PDF
    The widespread deployment of multi-hop wireless mesh networks will depend on the performance seen by the user. Unfortunately, the most predominant transport protocol, TCP, performs poorly over such networks, even leading to starvation in some topologies. In this work, we characterize the root causes of starvation in 802.11 scheduled multi-hop wireless networks via simulations. We analyze the performance of three categories of transport protocols. (1) end-to-end protocols that require implicit feedback (TCP SACK), (2) Explicit feedback based protocols (XCP and VCP) and (3) Open-loop protocol (UDP). We ask and answer the following questions in relation to these protocols: (a) Why does starvation occur in different topologies? Is it intrinsic to TCP or, in general, to feedback-based protocols? or does it also occur in the case of open-loop transfers such as CBR over UDP? (a) What is the role of application behavior on transport layer performance in multi-hop wireless mesh networks? (b) Is sharing congestion in the wireless neighborhood essential for avoiding starvation? (c) For explicit feedback based transport protocols, such as XCP and VCP, what performance can be expected when their capacity estimate is inaccurate? Based on the insights derived from the above analysis, we design a rate-based protocol called VRate that uses the two ECN bits for conveying load feedback information. VRate achieves near optimal rates when configured with the correct capacity estimate

    Interference mitigation strategy design and applications for wireless sensor networks

    Get PDF
    The Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard presents a very useful technology for implementing low-cost, low-power, wireless sensor networks. Its main focus, which is to applications requiring simple wireless connectivity with relaxed throughout and latency requirements, makes it suitable for connecting devices that have not been networked, such as industrial and control instrumentation equipments, agricultural equipments, vehicular equipments, and home appliances. Its usage of the license-free 2.4 GHz frequency band makes the technique successful for fast and worldwide market deployments. However, concerns about interference have arisen due to the presence of other wireless technologies using the same spectrum. Although the IEEE 802.15.4 standard has provided some mechanisms, to enhance capability to coexist with other wireless devices operating on the same frequency band, including Carrier Sensor Multiple Access (CSMA), Clear Channel Assessment (CCA), channel alignment, and low duty cycle, it is essential to design and implement adjustable mechanisms for an IEEE 802.15.4 based system integrated into a practical application to deal with interference which changes randomly over time. Among the potential interfering systems (Wi-Fi, Bluetooth, cordless phones, microwave ovens, wireless headsets, etc) which work on the same Industrial, Scientific, and Medical (ISM) frequency band, Wi-Fi systems (IEEE 802.11 technique) have attracted most concerns because of their high transmission power and large deployment in both residential and office environments. This thesis aims to propose a methodology for IEEE 802.15.4 wireless systems to adopt proper adjustment in order to mitigate the effect of interference caused by IEEE 802.11 systems through energy detection, channel agility and data recovery. The contribution of this thesis consists of five parts. Firstly, a strategy is proposed to enable IEEE 802.15.4 systems to maintain normal communications using the means of consecutive transmissions, when the system s default mechanism of retransmission is insufficient to ensure successful rate due to the occurrence of Wi-Fi interference. Secondly, a novel strategy is proposed to use a feasible way for IEEE 802.15.4 systems to estimate the interference pattern, and accordingly adjust system parameters for the purpose of achieving optimized communication effectiveness during time of interference without relying on hardware changes and IEEE 802.15.4 protocol modifications. Thirdly, a data recovery mechanism is proposed for transport control to be applied for recovering lost data by associating with the proposed strategies to ensure the data integrity when IEEE 802.15.4 systems are suffering from interference. Fourthly, a practical case is studied to discuss how to design a sustainable system for home automation application constructed on the basis of IEEE 802.15.4 technique. Finally, a comprehensive design is proposed to enable the implementation of an interference mitigation strategy for IEEE 802.15.4 based ad hoc WSNs within a structure of building fire safety monitoring system. The proposed strategies and system designs are demonstrated mainly through theoretical analysis and experimental tests. The results obtained from the experimental tests have verified that the interference caused by an IEEE 802.11 system on an IEEE 802.15.4 system can be effectively mitigated through adjusting IEEE 802.15.4 system s parameters cooperating with interference pattern estimation. The proposed methods are suitable to be integrated into a system-level solution for an IEEE 802.15.4 system to deal with interference, which is also applicable to those wireless systems facing similar interference issues to enable the development of efficient mitigation strategies

    Internet Traffic based Channel Selection in Multi-Radio Multi-Channel Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks(WMNs) are the outstanding technology to facilitate wireless broadband Internet access to users. Routers in WMN have multiple radio interfaces to which multiple orthogonal/partially overlapping channels are assigned to improve the capacity of WMN. This paper is focused on channel selection problem in WMN since proper channel selection to radio interfaces of mesh router increases the performance of WMN. To access the Internet through WMN, the users have to associate with one of the mesh routers. Since most of the Internet Servers are still in wired networks, the major dominant traffic of Internet users is in downlink direction i.e. from the gateway of WMN to user. This paper proposes a new method of channel selection to improve the user performance in downlink direction of Internet traffic. The method is scalable and completely distributed solution to the problem of channel selection in WMN. The simulation results indicate the significant improvement in user performance

    Effects of physical channel separation on application flows in a multi-radio multi-hop wireless mesh network: An experimental study on BilMesh testbed

    Get PDF
    Cataloged from PDF version of article.In this paper, we introduce BilMesh, an indoor 802.11 b/g mesh networking testbed we established, and we report about our performance experiments conducted on multi-hop topologies with single-radio and multi-radio relay nodes. We investigate and report the effects of using multi-radio, multi-channel relay nodes in the mesh networking infrastructure in terms of network and application layer performance metrics. We also study the effects of physical channel separation on achievable end-to-end goodput perceived by the applications in the multi-radio case by varying the channel separation between the radio interfaces of a multi-radio relay node. We have observed that the difference between TCP and UDP goodput performances together with the delay and jitter performance depends on the hop count. We also observed that assigning overlapping channels with a central frequency separation of 5-15 MHz may render the CSMA mechanism used in 802.11 MAC ineffective and hence reduce the overall network performance. Finally, we provide some suggestions that can be considered while designing related protocols and algorithms to deal with the observed facts. (C) 2013 Elsevier Ltd. All rights reserved

    Impacts of Channel Switching Overhead on the Performance of Multicast in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising technology for next generation wireless networking. A WMN extends network coverage using wireless mesh routers that communicate with each other via multi-hop wireless communications. One technique to increase the network capacity of WMNs is to use routers equipped with multiple radios capable of transmitting and receiving on multiple channels. In a Multi-Channel Multi-Radio wireless mesh network (MCMR WMN), nodes are capable of transmitting and receiving data simultaneously through different radios and at least theoretically doubling the average throughput. On the other hand, the use of multi-radio and multi-channel technology in many cases requires routers to switch channels for each transmission and/or reception. Channel switching incurs additional costs and delay. In this thesis, we present a simulation-based study of the impacts of channel switching overheads on the performance of multicast in MCMR WMNs. We study how channel switching overheads affect the performance metrics such as packet delivery ratio, throughput, end-to-end delay, and delay jitter of a multicast session. In particular, we examine: 1. the performance of multicast in MCMR WMNs with three orthogonal channels versus eleven overlapping channels defined in IEEE 802.11b. 2. the performance of the Minimum-interference Multi-channel Multi-radio Multicast (M4) algorithm with and without channel switching. 3. the performance of the Multi-Channel Minimum Number of Transmissions (MCMNT) algorithm (which does not do channel switching) in comparison with the M4 algorithm (which performs channel switching)
    corecore