9 research outputs found

    Applications of iterative decoding to magnetic recording channels.

    Get PDF
    Finally, Q-ary LDPC (Q-LDPC) codes are considered for MRCs. Belief propagation decoding for binary LDPC codes is extended to Q-LDPC codes and a reduced-complexity decoding algorithm for Q-LDPC codes is developed. Q-LDPC coded systems perform very well with random noise as well as with burst erasures. Simulations show that Q-LDPC systems outperform RS systems.Secondly, binary low-density parity-check (LDPC) codes are proposed for MRCs. Random binary LDPC codes, finite-geometry LDPC codes and irregular LDPC codes are considered. With belief propagation decoding, LDPC systems are shown to have superior performance over current Reed-Solomon (RS) systems at the range possible for computer simulation. The issue of RS-LDPC concatenation is also addressed.Three coding schemes are investigated for magnetic recording systems. Firstly, block turbo codes, including product codes and parallel block turbo codes, are considered on MRCs. Product codes with other types of component codes are briefly discussed.Magnetic recoding channels (MRCs) are subject to noise contamination and error-correcting codes (ECCs) are used to keep the integrity of the data. Conventionally, hard decoding of the ECCs is performed. In this dissertation, systems using soft iterative decoding techniques are presented and their improved performance is established

    Construction of Near-Optimum Burst Erasure Correcting Low-Density Parity-Check Codes

    Full text link
    In this paper, a simple, general-purpose and effective tool for the design of low-density parity-check (LDPC) codes for iterative correction of bursts of erasures is presented. The design method consists in starting from the parity-check matrix of an LDPC code and developing an optimized parity-check matrix, with the same performance on the memory-less erasure channel, and suitable also for the iterative correction of single bursts of erasures. The parity-check matrix optimization is performed by an algorithm called pivot searching and swapping (PSS) algorithm, which executes permutations of carefully chosen columns of the parity-check matrix, after a local analysis of particular variable nodes called stopping set pivots. This algorithm can be in principle applied to any LDPC code. If the input parity-check matrix is designed for achieving good performance on the memory-less erasure channel, then the code obtained after the application of the PSS algorithm provides good joint correction of independent erasures and single erasure bursts. Numerical results are provided in order to show the effectiveness of the PSS algorithm when applied to different categories of LDPC codes.Comment: 15 pages, 4 figures. IEEE Trans. on Communications, accepted (submitted in Feb. 2007

    Error-correction coding for high-density magnetic recording channels.

    Get PDF
    Finally, a promising algorithm which combines RS decoding algorithm with LDPC decoding algorithm together is investigated, and a reduced-complexity modification has been proposed, which not only improves the decoding performance largely, but also guarantees a good performance in high signal-to-noise ratio (SNR), in which area an error floor is experienced by LDPC codes.The soft-decision RS decoding algorithms and their performance on magnetic recording channels have been researched, and the algorithm implementation and hardware architecture issues have been discussed. Several novel variations of KV algorithm such as soft Chase algorithm, re-encoded Chase algorithm and forward recursive algorithm have been proposed. And the performance of nested codes using RS and LDPC codes as component codes have been investigated for bursty noise magnetic recording channels.Future high density magnetic recoding channels (MRCs) are subject to more noise contamination and intersymbol interference, which make the error-correction codes (ECCs) become more important. Recent research of replacement of current Reed-Solomon (RS)-coded ECC systems with low-density parity-check (LDPC)-coded ECC systems obtains a lot of research attention due to the large decoding gain for LDPC-coded systems with random noise. In this dissertation, systems aim to maintain the RS-coded system using recent proposed soft-decision RS decoding techniques are investigated and the improved performance is presented

    Low-density parity-check coding for high-density magnetic recording systems.

    Get PDF
    Our strategy is to combine advanced signal processing techniques, the core of which is soft-decision iterative channel detection, with powerful low-density parity-check (LDPC) coding techniques.Magnetic recording channels (MRCs), including both longitudinal and perpendicular ones, are subject to a number of physical impairments, such as electronic/media noise, intersymbol interference (ISI), erasure, and intertrack interference (ITI). These impairments, if not appropriately handled, are barriers to achieving ultra-high densities. The goal of this dissertation is to study the impact of these multiple impairments on system performance, and to develop techniques to mitigate this impact such that the performance is as close to the theoretical limit of the channel as can be achieved by practical and implementable means.Specifically, the performance of regular LDPC codes on MRCs is first evaluated. Both randomly and structurally constructed codes are considered. Secondly, density evolution is used to analyze and design LDPC codes for MRCs. Results show that better irregular codes can be obtained. Afterwards, this algorithm is modified to include erasures, and erasure detection algorithms are studied. Fourthly, an improved algorithm for LDPC decoding, called signal-to-noise ratio (SNR) mismatch is unveiled. This algorithm may be useful for future practical applications. Finally, a channel detection algorithm for handling ITI in perpendicular recording is optimized, the eventual goal of which is to maximize the attainable track density

    Correcci贸n de borrado en r谩faga utilizando c贸digos LDPC construidos sobre matrices generadas por grupos combinados, pol铆gonos anidados y matrices circulantes superpuestas

    Get PDF
    En este art铆culo son propuestos procedimientos para la construcci贸n de matrices base embazado en el 谩lgebra moderna y en la geometr铆a. Estas matrices sirven de plataforma para generar las matrices de verificaci贸n de paridad en la correcci贸n de borrado en r谩faga a trav茅s de c贸digos LDPC, por medio de superposici贸n en las matrices base y movimientos de las matrices circulantes. La construcci贸n de las matrices es realizada por concatenaci贸n, siendo de f谩cil implementaci贸n y de menor aleatoriedad. Para demonstrar el potencial de la t茅cnica, fue elaborado un conjunto de simulaciones que utiliza codificaci贸n de baja complejidad, bien como algoritmo soma y producto. Fueron generados varios c贸digos LDPC (matrices) y los resultados obtenidos comparados con otros abordajes. Son tambi茅n presentados los resultados de la simulaci贸n de la recuperaci贸n de borrados resultantes de la transmisi贸n de una imagen a trav茅s de un canal ruidoso.This article proposes procedures for the construction of base matrices grounded in algebra and geometry. These base matrices serve as a platform to generate the parity check matrices for debugging in bursts erasure through LDPC codes by superposing the base matrices and movements of circulant matrices. The construction of the matrices is performed by concatenation as it is easy to implement and has a lower randomness. To demonstrate the potential of the technique, we developed a number of simulations using low complexity encoding as well as the sum-product algorithm. Several LDPC codes (matrices) were generated and the results were compared with other approaches. We also present the outcomes of erasure recovery simulations that result from the transmission of an image through a noisy channel

    Low complexity encoding algorithm of RS-based QC-LDPC codes

    Full text link

    Analysis and optimization of the satellite-to-plane link of an aeronautical global system

    Get PDF
    En aquest projecte s'ha analitzat i optimitzat l'enlla莽 sat猫l路lit amb avi贸 per a un sistema aeron脿utic global. Aquest nou sistema anomenat ANTARES est脿 dissenyat per a comunicar avions amb estacions base mitjan莽ant un sat猫l路lit. Aquesta 茅s una iniciativa on hi participen institucions oficials en l'aviaci贸 com ara l'ECAC i que 茅s desenvolupat en una col路laboraci贸 europea d'universitats i empreses. El treball dut a terme en el projecte compren b脿sicament tres aspectes. El disseny i an脿lisi de la gesti贸 de recursos. La idone茂tat d'utilitzar correcci贸 d'errors en la capa d'enlla莽 i en cas que sigui necess脿ria dissenyar una opci贸 de codificaci贸 preliminar. Finalment, estudiar i analitzar l'efecte de la interfer猫ncia co-canal en sistemes multifeix. Tots aquests temes s贸n considerats nom茅s per al "forward link". L'estructura que segueix el projecte 茅s primer presentar les caracter铆stiques globals del sistema, despr茅s centrar-se i analitzar els temes mencionats per a poder donar resultats i extreure conclusions.En este proyecto se ha analizado y optimizado el enlace sat茅lite a avi贸n para un sistema aeron谩utico global. Este nuevo sistema, ANTARES, est谩 dise帽ado para comunicar aviones y estaciones base mediante un sat茅lite. Esta es una iniciativa europea en la que participan varias instituciones oficiales en aviaci贸n como el ECAC y es desarrollada en una colaboraci贸n europea de universidades y empresas. El trabajo llevado a cabo en este proyecto comprende b谩sicamente tres aspectos. El dise帽o y an谩lisis de la gesti贸n de recursos. La idoneidad de usar correcci贸n de errores en la capa de enlace y en caso que sea necesario dise帽ar una opci贸n de codificaci贸n preliminar. Finalmente, estudiar y analizar el efecto de la interferencia co-canal en sistemas multihaz. Todos estos temas se consideran s贸lo en el "forward link". La estructura que sigue el trabajo es, primero presentar las caracter铆sticas globales del sistema, luego centrarse y analizar los temas mencionados para finalmente dar resultados y extraer conclusiones.In this project it is analyzed and optimized the satellite-to-plane link of an aeronautical global system. This new upcoming system called ANTARES is intended for communicating airplanes and ground stations through a satellite system. This is a European initiative involving official institutions in terms of aviation such as the ECAC and developed in a European collaboration of universities and companies. The work carried out in the project comprehends basically three issues. The Radio Resource Management analysis and design. Analyze the suitability of using Link Layer-Forward Error Correction in the system and in case it is necessary design a preliminary coding option. Finally, study and analyze the effect of the co-channel interference in multibeam systems. All these issues are considered only for the forward link of the system. The structure of the project is as follows, first present the global characteristics of the system, then focus and analyze the mentioned subjects and finally give results and take conclusions on the work
    corecore