71 research outputs found

    An Application of Matrix Analytic Methods to Queueing Models with Polling

    Get PDF
    We review what it means to model a queueing system, and highlight several components of interest which govern the behaviour of customers, as well as the server(s) who tend to them. Our primary focus is on polling systems, which involve one or more servers who must serve multiple queues of customers according to their service policy, which is made up of an overall polling order, and a service discipline defined at each queue. The most common polling orders and service disciplines are discussed, and some examples are given to demonstrate their use. Classic matrix analytic method theory is built up and illustrated on models of increasing complexity, to provide context for the analyses of later chapters. The original research contained within this thesis is divided into two halves, finite population maintenance models and infinite population cyclic polling models. In the first half, we investigate a 2-class maintenance system with a single server, expressed as a polling model. In Chapter 2, the model we study considers a total of C machines which are at risk of failing when working. Depending on the failure that a machine experiences, it is sorted into either the class-1 or class-2 queue where it awaits service among other machines suffering from similar failures. The possible service policies that are considered include exhaustive, non-preemptive priority, and preemptive resume priority. In Chapter 3, this model is generalized to allow for a maintenance float of f spare machines that can be turned on to replace a failed machine. Additionally, the possible server behaviours are greatly generalized. In both chapters, among other topics, we discuss the optimization of server behaviour as well as the limiting number of working machines as we let C go to infinity. As these are systems with a finite population (for a given C and f), their steady-state distributions can be solved for using the algorithm for level-dependent quasi-birth-and-death processes without loss of accuracy. When a class of customers are impatient, the algorithms covered in this thesis require their queue length to be truncated in order for us to approximate the steady-state distribution for all but the simplest model. In Chapter 4, we model a 2-queue polling system with impatient customers and k_i-limited service disciplines. Finite buffers are assumed for both queues, such that if a customer arrives to find their queue full then they are blocked and lost forever. Finite buffers are a way to interpret a necessary truncation level, since we can simply assume that it is impossible to observe the removed states. However, if we are interested in approximating an infinite buffer system, this inconsistency will bias the steady-state probabilities if blocking probabilities are not negligible. In Chapter 5, we introduce the Unobserved Waiting Customer approximation as a way to reduce this natural biasing that is incurred when approximating an infinite buffer system. Among the queues considered within this chapter is a N-queue system with exhaustive service and customers who may or may not be impatient. In Chapter 6, we extend this approximation to allow for reneging rates that depend on a customer's place in their queue. This is applied to a N-queue polling system which generalizes the model of Chapter 4

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the Takács Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    Discrete Time Analysis of Multi-Queue Systems with Multiple Departure Streams in Material Handling and Production under Different Service Rules

    Get PDF
    In this work, we present a modelling approach in order to depict service rules holistically. The developed model is called multi-queue system with multiple departure streams (MQSMDS). The MQSMDS is modelled as a discrete time Markov chain. On the basis of a numerical study, the system characteristics are evaluated. The results of this work enable a rapid and low-cost analysis of material handling and production systems as well as a fast and easy identification of suitable service rules

    Analysis of limited-priority scheduling rules in discrete-time queues

    Get PDF

    Performance analysis at the crossroad of queueing theory and road traffic

    Get PDF

    Performance analysis at the crossroad of queueing theory and road traffic

    Get PDF
    • …
    corecore