8 research outputs found

    Performance Evaluation in Single or Multi-Cluster C-RAN Supporting Quasi-Random Traffic

    Get PDF
    In this paper, a cloud radio access network (C-RAN) is considered where the remote radio heads (RRHs) are separated from the baseband units (BBUs). The RRHs in the C-RAN are grouped in different clusters according to their capacity while the BBUs form a centralized pool of computational resource units. Each RRH services a finite number of mobile users, i.e., the call arrival process is the quasi-random process. A new call of a single service-class requires a radio and a computational resource unit in order to be accepted in the C-RAN for a generally distributed service time. If these resource units are unavailable, then the call is blocked and lost. To analyze the multi-cluster C-RAN, we model it as a single-rate loss system, show that a product form solution exists for the steady state probabilities and propose a convolution algorithm for the accurate determination of congestion probabilities. The accuracy of this algorithm is verified via simulation. The proposed model generalizes our recent model where the RRHs in the C-RAN are grouped in a single cluster and each RRH accommodates quasi-random traffic

    State-Dependent Bandwidth Sharing Policies for Wireless Multirate Loss Networks

    Get PDF
    We consider a reference cell of fixed capacity in a wireless cellular network while concentrating on next-generation network architectures. The cell accommodates new and handover calls from different service-classes. Arriving calls follow a random or quasi-random process and compete for service in the cell under two bandwidth sharing policies: 1) a probabilistic threshold (PrTH) policy or 2) the multiple fractional channel reservation (MFCR) policy. In the PrTH policy, if the number of in-service calls (new or handover) of a service-class exceeds a threshold (difference between new and handover calls), then an arriving call of the same service-class is accepted in the cell with a predefined state-dependent probability. In the MFCR policy, a real number of channels is reserved to benefit calls of certain service-classes; thus, a service priority is introduced. The cell is modeled as a multirate loss system. Under the PrTH policy, call-level performance measures are determined via accurate convolution algorithms, while under the MFCR policy, via approximate but efficient models. Furthermore, we discuss the applicability of the proposed models in 4G/5G networks. The accuracy of the proposed models is verified through simulation. Comparison against other models reveals the necessity of the new models and policies

    Journal of Telecommunications and Information Technology, 2018, nr 1

    Get PDF
    We consider a two-link system that accommodates Poisson arriving calls from different service-classes and propose a multirate teletraffic loss model for its analysis. Each link has two thresholds, which refer to the number of in-service calls in the link. The lowest threshold, named support threshold, defines up to which point the link can support calls offloaded from the other link. The highest threshold, named offloading threshold, defines the point where the link starts offloading calls to the other link. The adopted bandwidth sharing policy is the complete sharing policy, in which a call can be accepted in a link if there exist enough available bandwidth units. The model does not have a product form solution for the steady state probabilities. However, we propose approximate formulas, based on a convolution algorithm, for the calculation of call blocking probabilities. The accuracy of the formulas is verified through simulation and found to be quite satisfactory

    JTIT

    Get PDF
    kwartalni

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book
    corecore