1,573 research outputs found

    Performance Modeling of the Middleware Overlay Infrastructure of Mobile Things

    Get PDF
    International audienceInternet of Things (IoT) applications consist of diverse Things (sensors and devices) in terms of hardware resources. Furthermore, such applications are characterized by the Things' mobility and multiple interaction types, such as synchronous, asynchronous, and streaming. Middleware IoT protocols consider the above limitations and support the development of effective applications by providing several Quality of Service features. These features aim to enable application developers to tune an application by switching different levels of response times and delivery success rates. However, the profusion of the developed IoT protocols and the intermittent connectivity of mobile Things, result to a non-trivial application tuning. In this paper, we model the performance of the middleware overlay infrastructure using Queueing Network Models. To represent the mobile Thing's connections/disconnections, we model and solve analytically an ON/OFF queueing center. We apply our approach to Streaming interactions with mobile peers. Finally, we validate our model using simulations. The deviations between the performance results foreseen by the analytical model and the ones provided by the simulator are shown to be less than 5%

    Overlay virtualized wireless sensor networks for application in industrial internet of things : a review

    Get PDF
    Abstract: In recent times, Wireless Sensor Networks (WSNs) are broadly applied in the Industrial Internet of Things (IIoT) in order to enhance the productivity and efficiency of existing and prospective manufacturing industries. In particular, an area of interest that concerns the use of WSNs in IIoT is the concept of sensor network virtualization and overlay networks. Both network virtualization and overlay networks are considered contemporary because they provide the capacity to create services and applications at the edge of existing virtual networks without changing the underlying infrastructure. This capability makes both network virtualization and overlay network services highly beneficial, particularly for the dynamic needs of IIoT based applications such as in smart industry applications, smart city, and smart home applications. Consequently, the study of both WSN virtualization and overlay networks has become highly patronized in the literature, leading to the growth and maturity of the research area. In line with this growth, this paper provides a review of the development made thus far concerning virtualized sensor networks, with emphasis on the application of overlay networks in IIoT. Principally, the process of virtualization in WSN is discussed along with its importance in IIoT applications. Different challenges in WSN are also presented along with possible solutions given by the use of virtualized WSNs. Further details are also presented concerning the use of overlay networks as the next step to supporting virtualization in shared sensor networks. Our discussion closes with an exposition of the existing challenges in the use of virtualized WSN for IIoT applications. In general, because overlay networks will be contributory to the future development and advancement of smart industrial and smart city applications, this review may be considered by researchers as a reference point for those particularly interested in the study of this growing field

    The Quest for Scalability and Accuracy in the Simulation of the Internet of Things: an Approach based on Multi-Level Simulation

    Full text link
    This paper presents a methodology for simulating the Internet of Things (IoT) using multi-level simulation models. With respect to conventional simulators, this approach allows us to tune the level of detail of different parts of the model without compromising the scalability of the simulation. As a use case, we have developed a two-level simulator to study the deployment of smart services over rural territories. The higher level is base on a coarse grained, agent-based adaptive parallel and distributed simulator. When needed, this simulator spawns OMNeT++ model instances to evaluate in more detail the issues concerned with wireless communications in restricted areas of the simulated world. The performance evaluation confirms the viability of multi-level simulations for IoT environments.Comment: Proceedings of the IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2017

    Fault Tolerant Adaptive Parallel and Distributed Simulation through Functional Replication

    Full text link
    This paper presents FT-GAIA, a software-based fault-tolerant parallel and distributed simulation middleware. FT-GAIA has being designed to reliably handle Parallel And Distributed Simulation (PADS) models, which are needed to properly simulate and analyze complex systems arising in any kind of scientific or engineering field. PADS takes advantage of multiple execution units run in multicore processors, cluster of workstations or HPC systems. However, large computing systems, such as HPC systems that include hundreds of thousands of computing nodes, have to handle frequent failures of some components. To cope with this issue, FT-GAIA transparently replicates simulation entities and distributes them on multiple execution nodes. This allows the simulation to tolerate crash-failures of computing nodes. Moreover, FT-GAIA offers some protection against Byzantine failures, since interaction messages among the simulated entities are replicated as well, so that the receiving entity can identify and discard corrupted messages. Results from an analytical model and from an experimental evaluation show that FT-GAIA provides a high degree of fault tolerance, at the cost of a moderate increase in the computational load of the execution units.Comment: arXiv admin note: substantial text overlap with arXiv:1606.0731

    Towards a Cognitive Compute Continuum: An Architecture for Ad-Hoc Self-Managed Swarms

    Get PDF
    In this paper we introduce our vision of a Cognitive Computing Continuum to address the changing IT service provisioning towards a distributed, opportunistic, self-managed collaboration between heterogeneous devices outside the traditional data center boundaries. The focal point of this continuum are cognitive devices, which have to make decisions autonomously using their on-board computation and storage capacity based on information sensed from their environment. Such devices are moving and cannot rely on fixed infrastructure elements, but instead realise on-the-fly networking and thus frequently join and leave temporal swarms. All this creates novel demands for the underlying architecture and resource management, which must bridge the gap from edge to cloud environments, while keeping the QoS parameters within required boundaries. The paper presents an initial architecture and a resource management framework for the implementation of this type of IT service provisioning.Comment: 8 pages, CCGrid 2021 Cloud2Things Worksho

    Hitch Hiker 2.0: a binding model with flexible data aggregation for the Internet-of-Things

    Get PDF
    Wireless communication plays a critical role in determining the lifetime of Internet-of-Things (IoT) systems. Data aggregation approaches have been widely used to enhance the performance of IoT applications. Such approaches reduce the number of packets that are transmitted by combining multiple packets into one transmission unit, thereby minimising energy consumption, collisions and congestion. However, current data aggregation schemes restrict developers to a specific network structure or cannot handle multi-hop data aggregation. In this paper, we propose Hitch Hiker 2.0, a component binding model that provides support for multi-hop data aggregation. Hitch Hiker uses component meta-data to discover remote component bindings and to construct a multi-hop overlay network within the free payload space of existing traffic flows. Hitch Hiker 2.0 provides end-to-end routing of low-priority traffic while using only a small fraction of the energy of standard communication. This paper extends upon our previous work by incorporating new mechanisms for decentralised route discovery and providing additional application case studies and evaluation. We have developed a prototype implementation of Hitch Hiker for the LooCI component model. Our evaluation shows that Hitch Hiker consumes minimal resources and that using Hitch Hiker to deliver low-priority traffic reduces energy consumption by up to 32 %

    Updated taxonomy for the network and service management research field

    Get PDF
    Network and service management is an established research field within the general area of computer networks. A few years ago, an initial taxonomy, organizing a comprehensive list of terms and topics, was established through interviews with experts from both industry and academia. This taxonomy has since been used to better partition standardization efforts, identify classes of managed objects and improve the assignment of reviewers to papers submitted in the field. Because the field of network and service management is rapidly evolving, a biyearly update of the taxonomy was proposed. In this paper, a large-scale questionnaire is presented which was answered by experts in the field, evaluating the relevance of each individual topic for the next five years. Missing topics, which are likely to become relevant over the next few years, are identified as well. Furthermore, an analysis is performed of the records of papers submitted to major conferences in the area. Based on the obtained results, an updated version of the taxonomy is proposed.Peer ReviewedPostprint (author's final draft
    • …
    corecore