509 research outputs found

    Acceleration of Coarse Grain Molecular Dynamics on GPU Architectures

    Get PDF
    Coarse grain (CG) molecular models have been proposed to simulate complex sys- tems with lower computational overheads and longer timescales with respect to atom- istic level models. However, their acceleration on parallel architectures such as Graphic Processing Units (GPU) presents original challenges that must be carefully evaluated. The objective of this work is to characterize the impact of CG model features on parallel simulation performance. To achieve this, we implemented a GPU-accelerated version of a CG molecular dynamics simulator, to which we applied specic optimizations for CG models, such as dedicated data structures to handle dierent bead type interac- tions, obtaining a maximum speed-up of 14 on the NVIDIA GTX480 GPU with Fermi architecture. We provide a complete characterization and evaluation of algorithmic and simulated system features of CG models impacting the achievable speed-up and accuracy of results, using three dierent GPU architectures as case studie

    Development of High Performance Molecular Dynamics with Application to Multimillion-Atom Biomass Simulations

    Get PDF
    An understanding of the recalcitrance of plant biomass is important for efficient economic production of biofuel. Lignins are hydrophobic, branched polymers and form a residual barrier to effective hydrolysis of lignocellulosic biomass. Understanding lignin\u27s structure, dynamics and its interaction and binding to cellulose will help with finding more efficient ways to reduce its contribution to the recalcitrance. Molecular dynamics (MD) using the GROMACS software is employed to study these properties in atomic detail. Studying complex, realistic models of pretreated plant cell walls, requires simulations significantly larger than was possible before. The most challenging part of such large simulations is the computation of the electrostatic interaction. As a solution, the reaction-field (RF) method has been shown to give accurate results for lignocellulose systems, as well as good computational efficiency on leadership class supercomputers. The particle-mesh Ewald method has been improved by implementing 2D decomposition and thread level parallelization for molecules not accurately modeled by RF. Other scaling limiting computational components, such as the load balancing and memory requirements, were identified and addressed to allow such large scale simulations for the first time. This work was done with the help of modern software engineering principles, including code-review, continuous integration, and integrated development environments. These methods were adapted to the special requirements for scientific codes. Multiple simulations of lignocellulose were performed. The simulation presented primarily, explains the temperature-dependent structure and dynamics of individual softwood lignin polymers in aqueous solution. With decreasing temperature, the lignins are found to transition from mobile, extended to glassy, compact states. The low-temperature collapse is thermodynamically driven by the increase of the translational entropy and density fluctuations of water molecules removed from the hydration shell

    Computational Approaches to Explore Bacterial Toxin Entry into the Host Cell

    Get PDF
    Many bacteria secrete toxic protein complexes that modify and disrupt essential processes in the infected cell that can lead to cell death. To conduct their action, these toxins often need to cross the cell membrane and reach a specific substrate inside the cell. The investigation of these protein complexes is essential not only for understanding their biological functions but also for the rational design of targeted drug delivery vehicles that must navigate across the cell membrane to deliver their therapeutic payload. Despite the immense advances in experimental techniques, the investigations of the toxin entry mechanism have remained challenging. Computer simulations are robust complementary tools that allow for the exploration of biological processes in exceptional detail. In this review, we first highlight the strength of computational methods, with a special focus on all-atom molecular dynamics, coarse-grained, and mesoscopic models, for exploring different stages of the toxin protein entry mechanism. We then summarize recent developments that are significantly advancing our understanding, notably of the glycolipid–lectin (GL-Lect) endocytosis of bacterial Shiga and cholera toxins. The methods discussed here are also applicable to the design of membrane-penetrating nanoparticles and the study of the phenomenon of protein phase separation at the surface of the membrane. Finally, we discuss other likely routes for future development

    All-Atom Modeling of Protein Folding and Aggregation

    Get PDF
    Theoretical investigations of biorelevant processes in the life-science research require highly optimized simulation methods. Therefore, massively parallel Monte Carlo algorithms, namely MTM, were successfully developed and applied to the field of reversible protein folding allowing the thermodynamic characterization of proteins on an atomistic level. Further, the formation process of trans-membrane pores in the TatA system could be elucidated and the structure of the complex could be predicted

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    Enhancing large-scale docking simulation on heterogeneous systems: An MPI vs rCUDA study

    Full text link
    [EN] Virtual Screening (VS) methods can considerably aid clinical research by predicting how ligands interact with pharmacological targets, thus accelerating the slow and critical process of finding new drugs. VS methods screen large databases of chemical compounds to find a candidate that interacts with a given target. The computational requirements of VS models, along with the size of the databases, containing up to millions of biological macromolecular structures, means computer clusters are a must. However, programming current clusters of computers is no easy task, as they have become heterogeneous and distributed systems where various programming models need to be used together to fully leverage their resources. This paper evaluates several strategies to provide peak performance to a GPU-based molecular docking application called METADOCK in heterogeneous clusters of computers based on CPU and NVIDIA Graphics Processing Units (GPUs). Our developments start with an OpenMP, MPI and CUDA METADOCK version as a baseline case of cluster utilization. Next, we explore the virtualized GPUs provided by the rCUDA framework in order to facilitate the programming process. rCUDA allows us to use remote GPUs, i.e. installed in other nodes of the cluster, as if they were installed in the local node, so enabling access to them using only OpenMP and CUDA. Finally, several load balancing strategies are analyzed in a search to enhance performance. Our results reveal that the use of middleware like rCUDA is a convincing alternative to leveraging heterogeneous clusters, as it offers even better performance than traditional approaches and also makes it easier to program these emerging clusters.This work is jointly supported by the Fundacion Seneca (Agencia Regional de Ciencia y Tecnologia, Region de Murcia) under grant 18946/JLI/13, and by the Spanish MEC and European Commission FEDER under grants TIN2015-66972-C5-3-R and TIN2016-78799-P (AEI/FEDER, UE). We also thank NVIDIA for hardware donation under GPU Educational Center 2014-2016 and Research Center 2015-2016. Furthermore, researchers from Universitat Politecnica de Valencia are supported by the Generalitat Valenciana under Grant PROMETEO/2017/077. Authors are also grateful for the generous support provided by Mellanox Technologies Inc.Imbernón, B.; Prades Gasulla, J.; Gimenez Canovas, D.; Cecilia, JM.; Silla Jiménez, F. (2018). Enhancing large-scale docking simulation on heterogeneous systems: An MPI vs rCUDA study. Future Generation Computer Systems. 79:26-37. https://doi.org/10.1016/j.future.2017.08.050S26377
    corecore