310 research outputs found

    Fuzzy Logic Control of Adaptive ARQ for Video Distribution over a Bluetooth Wireless Link

    Get PDF
    Bluetooth's default automatic repeat request (ARQ) scheme is not suited to video distribution resulting in missed display and decoded deadlines. Adaptive ARQ with active discard of expired packets from the send buffer is an alternative approach. However, even with the addition of cross-layer adaptation to picture-type packet importance, ARQ is not ideal in conditions of a deteriorating RF channel. The paper presents fuzzy logic control of ARQ, based on send buffer fullness and the head-of-line packet's deadline. The advantage of the fuzzy logic approach, which also scales its output according to picture type importance, is that the impact of delay can be directly introduced to the model, causing retransmissions to be reduced compared to all other schemes. The scheme considers both the delay constraints of the video stream and at the same time avoids send buffer overflow. Tests explore a variety of Bluetooth send buffer sizes and channel conditions. For adverse channel conditions and buffer size, the tests show an improvement of at least 4 dB in video quality compared to nonfuzzy schemes. The scheme can be applied to any codec with I-, P-, and (possibly) B-slices by inspection of packet headers without the need for encoder intervention.</jats:p

    Adaptive buffer power save mechanism for mobile multimedia streaming

    Get PDF
    With the proliferation of wireless networks, the use of mobile devices to stream multimedia is growing in popularity. Although the devices are improving in that they are becoming smaller, more complex and capable of running more applications than ever before, there is one aspect of them that is lagging behind. Batteries have seen little development, even though they are one of the most important parts of the devices. Multimedia streaming puts extra pressure on batteries, causing them to discharge faster. This often means that streaming tasks can not be completed, resulting in significant user dissatisfaction. Consequently, effort is required to devise mechanisms to enable and increase in battery life while streaming multimedia. In this context, this thesis presents a novel algorithm to save power in mobile devices during the streaming of multimedia content. The proposed Adaptive-Buffer Power Save Mechanism (AB-PSM) controls how the data is sent over wireless networks, achieving significant power savings. There is little or no effect on the user and the algorithm is very simple to implement. The thesis describes tests which show the effectiveness of AB-PSM in comparison with the legacy power save mechanism present in IEEE 802.11. The thesis also presents a detailed overview of the IEEE 802.11 protocols and an in-depth literature review in the area of power saving during multimedia streaming. A novel analysis of how the battery of a mobile device is affected by multimedia streaming in its different stages is given. A total-power-save algorithm is then described as a possible extension to the Adaptive-Buffer Power Save Mechanism

    Greediness control algorithm for multimedia streaming in wireless local area networks

    Get PDF
    This work investigates the interaction between the application and transport layers while streaming multimedia in a residential Wireless Local Area Network (WLAN). Inconsistencies have been identified that can have a severe impact on the Quality of Experience (QoE) experienced by end users. This problem arises as a result of the streaming processes reliance on rate adaptation engines based on congestion avoidance mechanisms, that try to obtain as much bandwidth as possible from the limited network resources. These upper transport layer mechanisms have no knowledge of the media which they are carrying and as a result treat all traffic equally. This lack of knowledge of the media carried and the characteristics of the target devices results in fair bandwidth distribution at the transport layer but creates unfairness at the application layer. This unfairness mostly affects user perceived quality when streaming high quality multimedia. Essentially, bandwidth that is distributed fairly between competing video streams at the transport layer results in unfair application layer video quality distribution. Therefore, there is a need to allow application layer streaming solutions, tune the aggressiveness of transport layer congestion control mechanisms, in order to create application layer QoE fairness between competing media streams, by taking their device characteristics into account. This thesis proposes the Greediness Control Algorithm (GCA), an upper transport layer mechanism that eliminates quality inconsistencies caused by rate / congestion control mechanisms while streaming multimedia in wireless networks. GCA extends an existing solution (i.e. TCP Friendly Rate Control (TFRC)) by introducing two parameters that allow the streaming application to tune the aggressiveness of the rate estimation and as a result, introduce fair distribution of quality at the application layer. The thesis shows that this rate adaptation technique, combined with a scalable video format allows increased overall system QoE. Extensive simulation analysis demonstrate that this form of rate adaptation increases the overall user QoE achieved via a number of devices operating within the same home WLAN

    Quality-Oriented Mobility Management for Multimedia Content Delivery to Mobile Users

    Get PDF
    The heterogeneous wireless networking environment determined by the latest developments in wireless access technologies promises a high level of communication resources for mobile computational devices. Although the communication resources provided, especially referring to bandwidth, enable multimedia streaming to mobile users, maintaining a high user perceived quality is still a challenging task. The main factors which affect quality in multimedia streaming over wireless networks are mainly the error-prone nature of the wireless channels and the user mobility. These factors determine a high level of dynamics of wireless communication resources, namely variations in throughput and packet loss as well as network availability and delays in delivering the data packets. Under these conditions maintaining a high level of quality, as perceived by the user, requires a quality oriented mobility management scheme. Consequently we propose the Smooth Adaptive Soft-Handover Algorithm, a novel quality oriented handover management scheme which unlike other similar solutions, smoothly transfer the data traffic from one network to another using multiple simultaneous connections. To estimate the capacity of each connection the novel Quality of Multimedia Streaming (QMS) metric is proposed. The QMS metric aims at offering maximum flexibility and efficiency allowing the applications to fine tune the behavior of the handover algorithm. The current simulation-based performance evaluation clearly shows the better performance of the proposed Smooth Adaptive Soft-Handover Algorithm as compared with other handover solutions. The evaluation was performed in various scenarios including multiple mobile hosts performing handover simultaneously, wireless networks with variable overlapping areas, and various network congestion levels

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Audio/Video Transmission over IEEE 802.11e Networks: Retry Limit Adaptation and Distortion Estimation

    Get PDF
    The objective of this thesis focuses on the audio and video transmission over wireless networks adopting the family of the IEEE 802.11x standards. In particular, this thesis discusses about the resolution of four issues: the adaptive retransmission, the comparison of video quality indexes for retry limit adaptation purposes, the estimation of the distortion and the joint adaptation of the maximum number of retransmissions of voice and video flows

    Performance Evaluation of Video Streaming in an Infrastructure Mesh Based Vehicle Network

    Get PDF
    Most next-generation wireless networks are expected to support video stream- ing which constitutes the bulk of traffic on the Internet. This thesis evaluates the performance of video streaming in a vehicle network with an infrastructure wireless mesh network (WMN) backhaul. Several studies have investigated video quality per- formance primarily in single hop wireless networks and static WMNs. This thesis is based on those studies and conducts the study in relation to a network where the multi-hop features of the mesh network and mobility of the streaming clients may have substantial impact on the perceived video quality in the network. The study assumes a previously proposed vehicle network architecture con- sisting of an infrastructure WMN that serves as the mesh backhaul [2, 3]. A number of mesh routers (MRs) form the mesh backhaul using one of their two IEEE 802.11g radios whereas the other radio is used to communicate with the fast moving mesh clients (MCs). Selective MRs called mesh gateways (MGs) are connected to a wired network (e.g., the Internet, hereafter referred to as the core network) via a point-to- point link and provide gateway connectivity to the rest of the network. A server on the core network acts as a video server and streams individual video streams to the fast moving MCs. Upon deployment, network discovery occurs and segregates the network into a number of separate routing zones with each routing zone consisting of a single MG and all the MRs that use the MG as their gateway. A minimum-hop based routing protocol is used to enable seamless handover of MCs from one MR to another within a single zone. Simulation studies in this thesis inspects the network and video streaming performance within a single routing zone, assuming the handoff and inter-zone routing being taken care of by the routing protocol and only focus on the intra-zone packet forwarding and scheduling impacts. Hence, this study does not address cases where MCs move from one routing zone to another routing zone in the mobile network. In the first part of the study, we evaluate the performance of video streaming in the described network by studying performance metrics across different layers of the protocol stack. The number of video flows that can be supported by the network is experimentally determined for each scenario. In the second part, the thesis studies controllable network and protocol parameters\u27 ability to improve the network and video quality performance. Simulations are run in an integrated framework that includes network-simulator ns-2, NS-MIRACLE, and Evalvid

    Smart PIN: performance and cost-oriented context-aware personal information network

    Get PDF
    The next generation of networks will involve interconnection of heterogeneous individual networks such as WPAN, WLAN, WMAN and Cellular network, adopting the IP as common infrastructural protocol and providing virtually always-connected network. Furthermore, there are many devices which enable easy acquisition and storage of information as pictures, movies, emails, etc. Therefore, the information overload and divergent content’s characteristics make it difficult for users to handle their data in manual way. Consequently, there is a need for personalised automatic services which would enable data exchange across heterogeneous network and devices. To support these personalised services, user centric approaches for data delivery across the heterogeneous network are also required. In this context, this thesis proposes Smart PIN - a novel performance and cost-oriented context-aware Personal Information Network. Smart PIN's architecture is detailed including its network, service and management components. Within the service component, two novel schemes for efficient delivery of context and content data are proposed: Multimedia Data Replication Scheme (MDRS) and Quality-oriented Algorithm for Multiple-source Multimedia Delivery (QAMMD). MDRS supports efficient data accessibility among distributed devices using data replication which is based on a utility function and a minimum data set. QAMMD employs a buffer underflow avoidance scheme for streaming, which achieves high multimedia quality without content adaptation to network conditions. Simulation models for MDRS and QAMMD were built which are based on various heterogeneous network scenarios. Additionally a multiple-source streaming based on QAMMS was implemented as a prototype and tested in an emulated network environment. Comparative tests show that MDRS and QAMMD perform significantly better than other approaches

    Survey on QoE/QoS Correlation Models for Video Streaming over Vehicular Ad-hoc Networks

    Get PDF
    Vehicular Ad-hoc Networks (VANETs) are a new emerging technology which has attracted enormous interest over the last few years. It enables vehicles to communicate with each other and with roadside infrastructures for many applications. One of the promising applications is multimedia services for traffic safety or infotainment. The video service requires a good quality to satisfy the end-user known as the Quality of Experience (QoE). Several models have been suggested in the literature to measure or predict this metric. In this paper, we present an overview of interesting researches, which propose QoE models for video streaming over VANETs. The limits and deficiencies of these models are identified, which shed light on the challenges and real problems to overcome in the future
    corecore