2,892 research outputs found

    A Scalable & Energy Efficient Graphene-Based Interconnection Framework for Intra and Inter-Chip Wireless Communication in Terahertz Band

    Get PDF
    Network-on-Chips (NoCs) have emerged as a communication infrastructure for the multi-core System-on-Chips (SoCs). Despite its advantages, due to the multi-hop communication over the metal interconnects, traditional Mesh based NoC architectures are not scalable in terms of performance and energy consumption. Folded architectures such as Torus and Folded Torus were proposed to improve the performance of NoCs while retaining the regular tile-based structure for ease of manufacturing. Ultra-low-latency and low-power express channels between communicating cores have also been proposed to improve the performance of conventional NoCs. However, the performance gain of these approaches is limited due to metal/dielectric based interconnection. Many emerging interconnect technologies such as 3D integration, photonic, Radio Frequency (RF), and wireless interconnects have been envisioned to alleviate the issues of a metal/dielectric interconnect system. However, photonic and RF interconnects need the additional physically overlaid optical waveguides or micro-strip transmission lines to enable data transmission across the NoC. Several on-chip antennas have shown to improve energy efficiency and bandwidth of on-chip data communications. However, the date rates of the mm-wave wireless channels are limited by the state-of-the-art power-efficient transceiver design. Recent research has brought to light novel graphene based antennas operating at THz frequencies. Due to the higher operating frequencies compared to mm-wave transceivers, the data rate that can be supported by these antennas are significantly higher. Higher operating frequencies imply that graphene based antennas are just hundred micrometers in size compared to dimensions in the range of a millimeter of mm-wave antennas. Such reduced dimensions are suitable for integration of several such transceivers in a single NoC for relatively low overheads. In this work, to exploit the benefits of a regular NoC structure in conjunction with emerging Graphene-based wireless interconnect. We propose a toroidal folding based NoC architecture. The novelty of this folding based approach is that we are using low power, high bandwidth, single hop direct point to point wireless links instead of multihop communication that happens through metallic wires. We also propose a novel phased based communication protocol through which multiple wireless links can be made active at a time without having any interference among the transceiver. This offers huge gain in terms of performance as compared to token based mechanism where only a single wireless link can be made active at a time. We also propose to extend Graphene-based wireless links to enable energy-efficient, phase-based chip-to-chip communication to create a seamless, wireless interconnection fabric for multichip systems as well. Through cycle-accurate system-level simulations, we demonstrate that such designs with torus like folding based on THz links instead of global wires along with the proposed phase based multichip systems. We provide estimates that they are able to provide significant gains (about 3 to 4 times better in terms of achievable bandwidth, packet latency and average packet energy when compared to wired system) in performance and energy efficiency in data transfer in a NoC as well as multichip system. Thus, realization of these kind of interconnection framework that could support high data rate links in Tera-bits-per-second that will alleviate the capacity limitations of current interconnection framework

    Limits on Fundamental Limits to Computation

    Full text link
    An indispensable part of our lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the last fifty years. Such Moore scaling now requires increasingly heroic efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and enrich our understanding of integrated-circuit scaling, we review fundamental limits to computation: in manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, we recall how some limits were circumvented, compare loose and tight limits. We also point out that engineering difficulties encountered by emerging technologies may indicate yet-unknown limits.Comment: 15 pages, 4 figures, 1 tabl

    Overcoming the Challenges for Multichip Integration: A Wireless Interconnect Approach

    Get PDF
    The physical limitations in the area, power density, and yield restrict the scalability of the single-chip multicore system to a relatively small number of cores. Instead of having a large chip, aggregating multiple smaller chips can overcome these physical limitations. Combining multiple dies can be done either by stacking vertically or by placing side-by-side on the same substrate within a single package. However, in order to be widely accepted, both multichip integration techniques need to overcome significant challenges. In the horizontally integrated multichip system, traditional inter-chip I/O does not scale well with technology scaling due to limitations of the pitch. Moreover, to transfer data between cores or memory components from one chip to another, state-of-the-art inter-chip communication over wireline channels require data signals to travel from internal nets to the peripheral I/O ports and then get routed over the inter-chip channels to the I/O port of the destination chip. Following this, the data is finally routed from the I/O to internal nets of the target chip over a wireline interconnect fabric. This multi-hop communication increases energy consumption while decreasing data bandwidth in a multichip system. On the other hand, in vertically integrated multichip system, the high power density resulting from the placement of computational components on top of each other aggravates the thermal issues of the chip leading to degraded performance and reduced reliability. Liquid cooling through microfluidic channels can provide cooling capabilities required for effective management of chip temperatures in vertical integration. However, to reduce the mechanical stresses and at the same time, to ensure temperature uniformity and adequate cooling competencies, the height and width of the microchannels need to be increased. This limits the area available to route Through-Silicon-Vias (TSVs) across the cooling layers and make the co-existence and co-design of TSVs and microchannels extreamly challenging. Research in recent years has demonstrated that on-chip and off-chip wireless interconnects are capable of establishing radio communications within as well as between multiple chips. The primary goal of this dissertation is to propose design principals targeting both horizontally and vertically integrated multichip system to provide high bandwidth, low latency, and energy efficient data communication by utilizing mm-wave wireless interconnects. The proposed solution has two parts: the first part proposes design methodology of a seamless hybrid wired and wireless interconnection network for the horizontally integrated multichip system to enable direct chip-to-chip communication between internal cores. Whereas the second part proposes a Wireless Network-on-Chip (WiNoC) architecture for the vertically integrated multichip system to realize data communication across interlayer microfluidic coolers eliminating the need to place and route signal TSVs through the cooling layers. The integration of wireless interconnect will significantly reduce the complexity of the co-design of TSV based interconnects and microchannel based interlayer cooling. Finally, this dissertation presents a combined trade-off evaluation of such wireless integration system in both horizontal and vertical sense and provides future directions for the design of the multichip system

    Emerging applications of high temperature superconductors for space communications

    Get PDF
    Proposed space missions require longevity of communications system components, high input power levels, and high speed digital logic devices. The complexity of these missions calls for a high data bandwidth capacity. Incorporation of high temperature superconducting (HTS) thin films into some of these communications system components may provide a means of meeting these requirements. Space applications of superconducting technology has previously been limited by the requirement of cooling to near liquid helium temperatures. Development of HTS materials with transition temperatures above 77 K along with the natural cooling ability of space suggest that space applications may lead the way in the applications of high temperature superconductivity. In order for HTS materials to be incorporated into microwave and millimeter wave devices, the material properties such as electrical conductivity, current density, surface resistivity and others as a function of temperature and frequency must be well characterized and understood. The millimeter wave conductivity and surface resistivity were well characterized, and at 77 K are better than copper. Basic microwave circuits such as ring resonators were used to determine transmission line losses. Higher Q values than those of gold resonator circuits were observed below the transition temperature. Several key HTS circuits including filters, oscillators, phase shifters and phased array antenna feeds are feasible in the near future. For technology to improve further, good quality, large area films must be reproducibly grown on low dielectric constant, low loss microwave substrates

    Temperature Evaluation of NoC Architectures and Dynamically Reconfigurable NoC

    Get PDF
    Advancements in the field of chip fabrication led to the integration of a large number of transistors in a small area, giving rise to the multi–core processor era. Massive multi–core processors facilitate innovation and research in the field of healthcare, defense, entertainment, meteorology and many others. Reduction in chip area and increase in the number of on–chip cores is accompanied by power and temperature issues. In high performance multi–core chips, power and heat are predominant constraints. High performance massive multicore systems suffer from thermal hotspots, exacerbating the problem of reliability in deep submicron technologies. High power consumption not only increases the chip temperature but also jeopardizes the integrity of the system. Hence, there is a need to explore holistic power and thermal optimization and management strategies for massive on–chip multi–core environments. In multi–core environments, the communication fabric plays a major role in deciding the efficiency of the system. In multi–core processor chips this communication infrastructure is predominantly a Network–on–Chip (NoC). Tradition NoC designs incorporate planar interconnects as a result these NoCs have long, multi–hop wireline links for data exchange. Due to the presence of multi–hop planar links such NoC architectures fall prey to high latency, significant power dissipation and temperature hotspots. Networks inspired from nature are envisioned as an enabling technology to achieve highly efficient and low power NoC designs. Adopting wireless technology in such architectures enhance their performance. Placement of wireless interconnects (WIs) alters the behavior of the network and hence a random deployment of WIs may not result in a thermally optimal solution. In such scenarios, the WIs being highly efficient would attract high traffic densities resulting in thermal hotspots. Hence, the location and utilization of the wireless links is a key factor in obtaining a thermal optimal highly efficient Network–on–chip. Optimization of the NoC framework alone is incapable of addressing the effects due to the runtime dynamics of the system. Minimal paths solely optimized for performance in the network may lead to excessive utilization of certain NoC components leading to thermal hotspots. Hence, architectural innovation in conjunction with suitable power and thermal management strategies is the key for designing high performance and energy–efficient multicore systems. This work contributes at exploring various wired and wireless NoC architectures that achieve best trade–offs between temperature, performance and energy–efficiency. It further proposes an adaptive routing scheme which factors in the thermal profile of the chip. The proposed routing mechanism dynamically reacts to the thermal profile of the chip and takes measures to avoid thermal hotspots, achieving a thermally efficient dynamically reconfigurable network on chip architecture

    An Artificial Neural Networks based Temperature Prediction Framework for Network-on-Chip based Multicore Platform

    Get PDF
    Continuous improvement in silicon process technologies has made possible the integration of hundreds of cores on a single chip. However, power and heat have become dominant constraints in designing these massive multicore chips causing issues with reliability, timing variations and reduced lifetime of the chips. Dynamic Thermal Management (DTM) is a solution to avoid high temperatures on the die. Typical DTM schemes only address core level thermal issues. However, the Network-on-chip (NoC) paradigm, which has emerged as an enabling methodology for integrating hundreds to thousands of cores on the same die can contribute significantly to the thermal issues. Moreover, the typical DTM is triggered reactively based on temperature measurements from on-chip thermal sensor requiring long reaction times whereas predictive DTM method estimates future temperature in advance, eliminating the chance of temperature overshoot. Artificial Neural Networks (ANNs) have been used in various domains for modeling and prediction with high accuracy due to its ability to learn and adapt. This thesis concentrates on designing an ANN prediction engine to predict the thermal profile of the cores and Network-on-Chip elements of the chip. This thermal profile of the chip is then used by the predictive DTM that combines both core level and network level DTM techniques. On-chip wireless interconnect which is recently envisioned to enable energy-efficient data exchange between cores in a multicore environment, will be used to provide a broadcast-capable medium to efficiently distribute thermal control messages to trigger and manage the DTM schemes

    Improved reliability of planar power interconnect with ceramic-based structure

    Get PDF
    This paper proposes an advanced Si3N4 ceramic-based structure with through vias designed and filled with brazing alloy as a reliable interconnect solution in planar power modules. Finite element (FE) modeling and simulation were first used to predict the potential of using the proposed Si3N4 ceramic-based structure to improve the heat dissipation and reliability of planar interconnects. Power cycling tests and non-destructive microstructural characterization were then performed on Si3N4 ceramic-based structures, flexible printed circuit boards (PCB) and conventional Al wire interconnect samples to evaluate the FE predictions. Both the FE simulations and experimental tests were carried out on single Si diode samples where both the ceramic-based structures and flexible PCBs were bonded on the top sides of Si diodes with eutectic Sn-3.5Ag solder joints. The results obtained demonstrate that Si3N4 ceramic-based structures can significantly improve the reliability of planar interconnects. The experimental average lifetimes and FE simulated maximum creep strain accumulations for the ceramic-based structure and flexible PCB interconnect samples can reasonably be fitted to existing lifetime models for Sn-3.5Ag solder joints. Discrepancies between the models and experimental results can be attributed to defects and poor filling of the brazing alloy in the vias through the Si3N4 ceramic
    • …
    corecore