298 research outputs found

    A Survey of Smart Grid Systems on Electric Power Distribution Network and Its Impact on Reliability

    Get PDF
    This paper presents an excerpt of a more comprehensive survey of smart grid systems on electric power distribution networks and its impact on reliability. The survey was carried out as part of the feasibility study in Nigeria to determine its enhance-ability on the smartness of a conventional (traditional) distribution network. A smart grid is not a single technology but multiplex technologies in which the combination of different areas of engineering, communication and energy management systems are done. Consequently, a comprehensive review of various approaches and their impact on reliability of the network is presented. Furthermore, this paper introduces the smart grid technology and its features, reliability impacts and emerging issues and challenges that arise from the smart grid system applications. The benefit of this comprehensive survey is to provide a reference point for educational advancement on the recently published articles in the areas of smart grid systems on electric power distribution network as well as to stimulate further research interest

    Emergence in the security of protocols for mobile ad-hoc networks

    Get PDF
    This thesis is concerned with the study of secure wireless routing protocols, which have been deployed for the purpose of exchanging information in an adhoc networking enviromnent. A discrete event simulator is developed, utilising an adaptive systems modelling approach and emergence that aims to assess networking protocols in the presence of adversarial behaviour. The model is used in conjunction with the characteristics that routing protocols have and also a number of cryptographic primitives that can be deployed in order to safeguard the information being exchanged. It is shown that both adversarial behaviour, as well as protocol descriptions can be described in a way that allows for them to be treated as input on the machine level. Within the system, the output generated selects the fittest protocol design capable of withstanding one or more particular type of attacks. As a result, a number of new and improved protocol specifications are presented and benchmarked against conventional metrics, such as throughput, latency and delivery criteria. From this process, an architecture for designing wireless routing protocols based on a number of security criteria is presented, whereupon the decision of using particular characteristics in a specification has been passed onto the machine level

    Learning algorithms for the control of routing in integrated service communication networks

    Get PDF
    There is a high degree of uncertainty regarding the nature of traffic on future integrated service networks. This uncertainty motivates the use of adaptive resource allocation policies that can take advantage of the statistical fluctuations in the traffic demands. The adaptive control mechanisms must be 'lightweight', in terms of their overheads, and scale to potentially large networks with many traffic flows. Adaptive routing is one form of adaptive resource allocation, and this thesis considers the application of Stochastic Learning Automata (SLA) for distributed, lightweight adaptive routing in future integrated service communication networks. The thesis begins with a broad critical review of the use of Artificial Intelligence (AI) techniques applied to the control of communication networks. Detailed simulation models of integrated service networks are then constructed, and learning automata based routing is compared with traditional techniques on large scale networks. Learning automata are examined for the 'Quality-of-Service' (QoS) routing problem in realistic network topologies, where flows may be routed in the network subject to multiple QoS metrics, such as bandwidth and delay. It is found that learning automata based routing gives considerable blocking probability improvements over shortest path routing, despite only using local connectivity information and a simple probabilistic updating strategy. Furthermore, automata are considered for routing in more complex environments spanning issues such as multi-rate traffic, trunk reservation, routing over multiple domains, routing in high bandwidth-delay product networks and the use of learning automata as a background learning process. Automata are also examined for routing of both 'real-time' and 'non-real-time' traffics in an integrated traffic environment, where the non-real-time traffic has access to the bandwidth 'left over' by the real-time traffic. It is found that adopting learning automata for the routing of the real-time traffic may improve the performance to both real and non-real-time traffics under certain conditions. In addition, it is found that one set of learning automata may route both traffic types satisfactorily. Automata are considered for the routing of multicast connections in receiver-oriented, dynamic environments, where receivers may join and leave the multicast sessions dynamically. Automata are shown to be able to minimise the average delay or the total cost of the resulting trees using the appropriate feedback from the environment. Automata provide a distributed solution to the dynamic multicast problem, requiring purely local connectivity information and a simple updating strategy. Finally, automata are considered for the routing of multicast connections that require QoS guarantees, again in receiver-oriented dynamic environments. It is found that the distributed application of learning automata leads to considerably lower blocking probabilities than a shortest path tree approach, due to a combination of load balancing and minimum cost behaviour

    Ant colony optimisation-based algorithms for optical burst switching networks

    Get PDF
    This research developed two novel distributed algorithms inspired by Ant Colony Optimisation (ACO) for a solution to the problem of dynamic Routing and Wavelength Assignment (RWA) with wavelength continuity constraint in Optical Burst Switching (OBS) networks utilising both the traditional International Telecommunication Union (ITU) Fixed Grid Wavelength Division Multiplexing (WDM) and Flexible Spectrum scenarios. The growing demand for more bandwidth in optical networks require more efficient utilisation of available optical resources. OBS is a promising optical switching technique for the improved utilisation of optical network resources over the current optical circuit switching technique. The development of newer technologies has introduced higher rate transmissions and various modulation formats, however, introducing these technologies into the traditional ITU Fixed Grid does not efficiently utilise the available bandwidth. Flexible Spectrum is a promising approach offering a solution to the problem of improving bandwidth utilisation, which comes with a potential cost. Transmissions have the potential for impairment with respect to the increased traffic and lack of large channel spacing. Proposed routing algorithms should be aware of the linear and non-linear Physical Layer Impairments (PLIs) in order to operate closer to optimum performance. The OBS resource reservation protocol does not cater for the loss of transmissions, Burst Control Packets (BCPs) included, due to physical layer impairments. The protocol was adapted for use in Flexible Spectrum. Investigation of the use of a route and wavelength combination, from source to destination node pair, for the RWA process was proposed for ACO-based approaches to enforce the establishment and use of complete paths for greedy exploitation in Flexible Spectrum was conducted. The routing tuple for the RWA process is the tight coupling of a route and wavelength in combination intended to promote the greedy exploitation of successful paths for transmission requests. The application of the routing tuples differs from traditional ACO-based approaches and prompted the investigation of new pheromone calculation equations. The two novel proposed approaches were tested and experiments conducted comparing with and against existing algorithms (a simple greedy and an ACO-based algorithm) in a traditional ITU Fixed Grid and Flexible Spectrum scenario on three different network topologies. The proposed Flexible Spectrum Ant Colony (FSAC) approach had a markably improved performance over the existing algorithms in the ITU Fixed Grid WDM and Flexible Spectrum scenarios, while Upper Confidence Bound Routing and Wavelength Assignment (UCBRWA) algorithm was able to perform well in the traditional ITU Fixed Grid WDM scenario, but underperformed in the Flexible Spectrum scenario. The results show that the distributed ACO-based FSAC algorithm significantly improved the burst transmission success probability, providing a good solution in the Flexible Spectrum network environment undergoing transmission impairments

    Simulation and analysis of adaptive routing and flow control in wide area communication networks

    Get PDF
    This thesis presents the development of new simulation and analytic models for the performance analysis of wide area communication networks. The models are used to analyse adaptive routing and flow control in fully connected circuit switched and sparsely connected packet switched networks. In particular the performance of routing algorithms derived from the L(_R-I) linear learning automata model are assessed for both types of network. A novel architecture using the INMOS Transputer is constructed for simulation of both circuit and packet switched networks in a loosely coupled multi- microprocessor environment. The network topology is mapped onto an identically configured array of processing centres to overcome the processing bottleneck of conventional Von Neumann architecture machines. Previous analytic work in circuit switched work is extended to include both asymmetrical networks and adaptive routing policies. In the analysis of packet switched networks analytic models of adaptive routing and flow control are integrated to produce a powerful, integrated environment for performance analysis The work concludes that routing algorithms based on linear learning automata have significant potential in both fully connected circuit switched networks and sparsely connected packet switched networks

    Emergence in the security of protocols for mobile ad-hoc networks

    Get PDF
    This thesis is concerned with the study of secure wireless routing protocols, which have been deployed for the purpose of exchanging information in an adhoc networking enviromnent. A discrete event simulator is developed, utilising an adaptive systems modelling approach and emergence that aims to assess networking protocols in the presence of adversarial behaviour. The model is used in conjunction with the characteristics that routing protocols have and also a number of cryptographic primitives that can be deployed in order to safeguard the information being exchanged. It is shown that both adversarial behaviour, as well as protocol descriptions can be described in a way that allows for them to be treated as input on the machine level. Within the system, the output generated selects the fittest protocol design capable of withstanding one or more particular type of attacks. As a result, a number of new and improved protocol specifications are presented and benchmarked against conventional metrics, such as throughput, latency and delivery criteria. From this process, an architecture for designing wireless routing protocols based on a number of security criteria is presented, whereupon the decision of using particular characteristics in a specification has been passed onto the machine level.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    New Waves of IoT Technologies Research – Transcending Intelligence and Senses at the Edge to Create Multi Experience Environments

    Get PDF
    The next wave of Internet of Things (IoT) and Industrial Internet of Things (IIoT) brings new technological developments that incorporate radical advances in Artificial Intelligence (AI), edge computing processing, new sensing capabilities, more security protection and autonomous functions accelerating progress towards the ability for IoT systems to self-develop, self-maintain and self-optimise. The emergence of hyper autonomous IoT applications with enhanced sensing, distributed intelligence, edge processing and connectivity, combined with human augmentation, has the potential to power the transformation and optimisation of industrial sectors and to change the innovation landscape. This chapter is reviewing the most recent advances in the next wave of the IoT by looking not only at the technology enabling the IoT but also at the platforms and smart data aspects that will bring intelligence, sustainability, dependability, autonomy, and will support human-centric solutions.acceptedVersio
    • …
    corecore