8,072 research outputs found

    Regular and almost universal hashing: an efficient implementation

    Get PDF
    Random hashing can provide guarantees regarding the performance of data structures such as hash tables---even in an adversarial setting. Many existing families of hash functions are universal: given two data objects, the probability that they have the same hash value is low given that we pick hash functions at random. However, universality fails to ensure that all hash functions are well behaved. We further require regularity: when picking data objects at random they should have a low probability of having the same hash value, for any fixed hash function. We present the efficient implementation of a family of non-cryptographic hash functions (PM+) offering good running times, good memory usage as well as distinguishing theoretical guarantees: almost universality and component-wise regularity. On a variety of platforms, our implementations are comparable to the state of the art in performance. On recent Intel processors, PM+ achieves a speed of 4.7 bytes per cycle for 32-bit outputs and 3.3 bytes per cycle for 64-bit outputs. We review vectorization through SIMD instructions (e.g., AVX2) and optimizations for superscalar execution.Comment: accepted for publication in Software: Practice and Experience in September 201

    Simple, compact and robust approximate string dictionary

    Full text link
    This paper is concerned with practical implementations of approximate string dictionaries that allow edit errors. In this problem, we have as input a dictionary DD of dd strings of total length nn over an alphabet of size σ\sigma. Given a bound kk and a pattern xx of length mm, a query has to return all the strings of the dictionary which are at edit distance at most kk from xx, where the edit distance between two strings xx and yy is defined as the minimum-cost sequence of edit operations that transform xx into yy. The cost of a sequence of operations is defined as the sum of the costs of the operations involved in the sequence. In this paper, we assume that each of these operations has unit cost and consider only three operations: deletion of one character, insertion of one character and substitution of a character by another. We present a practical implementation of the data structure we recently proposed and which works only for one error. We extend the scheme to 2k<m2\leq k<m. Our implementation has many desirable properties: it has a very fast and space-efficient building algorithm. The dictionary data structure is compact and has fast and robust query time. Finally our data structure is simple to implement as it only uses basic techniques from the literature, mainly hashing (linear probing and hash signatures) and succinct data structures (bitvectors supporting rank queries).Comment: Accepted to a journal (19 pages, 2 figures

    Strongly universal string hashing is fast

    Get PDF
    We present fast strongly universal string hashing families: they can process data at a rate of 0.2 CPU cycle per byte. Maybe surprisingly, we find that these families---though they require a large buffer of random numbers---are often faster than popular hash functions with weaker theoretical guarantees. Moreover, conventional wisdom is that hash functions with fewer multiplications are faster. Yet we find that they may fail to be faster due to operation pipelining. We present experimental results on several processors including low-powered processors. Our tests include hash functions designed for processors with the Carry-Less Multiplication (CLMUL) instruction set. We also prove, using accessible proofs, the strong universality of our families.Comment: Software is available at http://code.google.com/p/variablelengthstringhashing/ and https://github.com/lemire/StronglyUniversalStringHashin

    Postprocessing for quantum random number generators: entropy evaluation and randomness extraction

    Full text link
    Quantum random-number generators (QRNGs) can offer a means to generate information-theoretically provable random numbers, in principle. In practice, unfortunately, the quantum randomness is inevitably mixed with classical randomness due to classical noises. To distill this quantum randomness, one needs to quantify the randomness of the source and apply a randomness extractor. Here, we propose a generic framework for evaluating quantum randomness of real-life QRNGs by min-entropy, and apply it to two different existing quantum random-number systems in the literature. Moreover, we provide a guideline of QRNG data postprocessing for which we implement two information-theoretically provable randomness extractors: Toeplitz-hashing extractor and Trevisan's extractor.Comment: 13 pages, 2 figure

    The universality of iterated hashing over variable-length strings

    Get PDF
    Iterated hash functions process strings recursively, one character at a time. At each iteration, they compute a new hash value from the preceding hash value and the next character. We prove that iterated hashing can be pairwise independent, but never 3-wise independent. We show that it can be almost universal over strings much longer than the number of hash values; we bound the maximal string length given the collision probability
    corecore