166 research outputs found

    Adaptive parameters adjustment in WBAN to mitigate Wi-Fi interferences

    Get PDF
    Wireless Body Area Network (WBAN), called also Wireless Body Sensor Network (WBSN), is composed of a set of tiny wireless devices (sensors) attached, implanted or ingested into the body. It offers real time and ubiquitous applications thanks to the small form, the lightness, and the wireless interface of sensors. WBAN performance is expected to be considerably degraded in the presence of Wi-Fi networks. Their operating channels overlap in the 2.4 GHz Industrial Scientific and Medical (ISM) band which produces interference when they transmit data, accompanied by data losses and quick battery exhaustion. Therefore, it is crucial to mitigate the interference between WBAN and Wi-Fi networks in order to maintain the efficiency and the reliability of the WBAN system. Proposals in the literature use an added complex hardware in WBAN system, or perform the exchange of additional information, or establish expensive communications, or affect the quality of service of the WBAN. Unlike previous researches, we proposed simple, low cost and dynamic method that adaptively adjusts specific parameters in the Medium Access Control (MAC) layer. We have proved the effectiveness of our approach based on theoretical analysis and simulation using MiXiM framework of OMNet++ simulato

    LIPADE's Research Efforts Wireless Body Sensor Networks

    Get PDF

    WBAN Security Management in Healthcare Enterprise Environments

    Get PDF
    As healthcare data are pushed online, consumers have raised big concerns on the breach of their personal information. Law and regulations have placed businesses and public organizations under obligations to take actions to prevent such data breaches. Various vulnerabilities have been identified in healthcare enterprise environments, in which the Wireless Body Area Networks (WBAN) remains to be a major vulnerability, which can be easily taken advantage of by determined adversaries. Thus, vulnerabilities of WBAN systems and the effective countermeasure mechanisms to secure WBAN are urgently needed. In this research, first, the architecture of WBAN system has been explored, and the vulnerabilities within the system have been identified and analyzed. After that, issues on existing federal regulations related to WBAN are discussed. Finally, scenarios are described where vulnerabilities, threats, and countermeasures are analyzed

    Particle Swarm Optimization for Interference Mitigation of Wireless Body Area Network: A Systematic Review

    Get PDF
    Wireless body area networks (WBAN) has now become an important technology in supporting services in the health sector and several other fields. Various surveys and research have been carried out massively on the use of swarm intelligent (SI) algorithms in various fields in the last ten years, but the use of SI in wireless body area networks (WBAN) in the last five years has not seen any significant progress. The aim of this research is to clarify and convince as well as to propose a answer to this problem, we have identified opportunities and topic trends using the particle swarm optimization (PSO) procedure as one of the swarm intelligence for optimizing wireless body area network interference mitigation performance. In this research, we analyzes primary studies collected using predefined exploration strings on online databases with the help of Publish or Perish and by the preferred reporting items for systematic reviews and meta-analysis (PRISMA) way. Articles were carefully selected for further analysis. It was found that very few researchers included optimization methods for swarm intelligence, especially PSO, in mitigating wireless body area network interference, whether for intra, inter, or cross-WBAN interference. This paper contributes to identifying the gap in using PSO for WBAN interference and also offers opportunities for using PSO both standalone and hybrid with other methods to further research on mitigating WBAN interference

    Why Software-Defined Radio (SDR) Matters in Healthcare?

    Get PDF
    Background: Wireless Body Area Networks (WBANs) have been drawing noteworthy academic and industrial attention. A WBAN states a network dedicated to acquire personal biomedical data via cutting-edge sensors and to transmit healthcare-related commands to particular types of actuators intended for health purposes. Still, different proprietary designs exist, which may lead to biased assessments. This paper studies the role of Software-Defined Radio (SDR) in a WBAN system for inpatient and outpatient monitoring and explains to health professionals the importance of the SDR within WBANs. Methods: A concern related to all wireless networks is their dependence on hardware, which limits reprogramming or reconfiguration alternatives. If an error happens in the equipment, firmware, or software, then, typically, there will be no way to fix system vulnerabilities. SDR solves many fixed-hardware problems with other benefits. Results: SDR entails more healthcare domain dynamics with more network convergence in agreement with the stakeholders involved. Then the SDR perspective can bring in innovation to the healthcare subsystems’ interoperability with recombination/reprogramming of their parts, updating, and malleability. Conclusion: SDR technology has many utilizations in radio environments and is becoming progressively more widespread among all kinds of users. Nowadays, there are many frameworks to manipulate radio signals only with a computer and an inexpensive SDR arrangement. Moreover, providing a very cheap radio receiver/transmitter equipment, SDR devices can be merged with free software to simplify the spectrum analyses, provide interferences detection, deliver efficient frequency distribution assignments, test repeaters' operation while measuring their parameters, identify spectrum intruders and characterize noise according to frequency bands

    Interference Mitigation in Multi-Hop Wireless Networks with Advanced Physical-Layer Techniques

    Get PDF
    In my dissertation, we focus on the wireless network coexistence problem with advanced physical-layer techniques. For the first part, we study the problem of Wireless Body Area Networks (WBAN)s coexisting with cross-technology interference (CTI). WBANs face the RF cross-technology interference (CTI) from non-protocol-compliant wireless devices. Werst experimentally characterize the adverse effect on BAN caused by the CTI sources. Then we formulate a joint routing and power control (JRPC) problem, which aims at minimizing energy consumption while satisfying node reachability and delay constraints. We reformulate our problem into a mixed integer linear programing problem (MILP) and then derive the optimal results. A practical JRPC protocol is then proposed. For the second part, we study the coexistence of heterogeneous multi-hop networks with wireless MIMO. We propose a new paradigm, called cooperative interference mitigation (CIM), which makes it possible for disparate networks to cooperatively mitigate the interference to/from each other to enhance everyone\u27s performance. We establish two tractable models to characterize the CIM behaviors of both networks by using full IC (FIC) and receiver-side IC (RIC) only. We propose two bi-criteria optimization problems aiming at maximizing both networks\u27 throughput, while cooperatively canceling the interference between them based on our two models. In the third and fourth parts, we study the coexistence problem with MIMO from a different point of view: the incentive of cooperation. We propose a novel two-round game framework, based on which we derive two networks\u27 equilibrium strategies and the corresponding closed-form utilities. We then extend our game-theoretical analysis to a general multi-hop case, specifically the coexistence problem between primary network and multi-hop secondary network in the cognitive radio networks domain. In the final part, we study the benefits brought by reconfigurable antennas (RA). We systematically exploit the pattern diversity and fast reconfigurability of RAs to enhance the throughput of MWNs. Werst propose a novel link-layer model that captures the dynamic relations between antenna pattern, link coverage and interference. Based on our model, a throughput optimization framework is proposed by jointly considering pattern selection and link scheduling, which is formulated as a mixed integer non-linear programming problem

    Diseños de capa cruzada para redes inalámbricas de área corporal energéticamente eficientes: una revisión

    Get PDF
    RESUMEN: El diseño de capa cruzada se considera una poderosa alternativa para dar solución a las complejidades introducidas por las comunicaciones inalámbricas en redes de área corporal (WBAN), donde el modelo clásico de comunicaciones no ha exhibido un desempeño adecuado. Respecto al problema puntual de consumo de energía, hemos preparado la presente revisión de las publicaciones más relevantes que tratan la eficiencia energética para WBAN usando diseño de capa cruzada. En este artículo se proporciona una revisión exhaustiva de los avances en aproximaciones, protocolos y optimizaciones de capa cruzada cuyo objetivo es incrementar el tiempo de vida de las redes WBAN mediante el ahorro de energía. Luego, se discute los aspectos relevantes y deficiencias de las técnicas de capa cruzada energéticamente eficientes. Además, se introducen aspectos de investigación abiertos y retos en el diseño de capa cruzada para WBAN. En esta revisión proponemos una taxonomía de las aproximaciones de capa cruzada, de modo que las técnicas revisadas se ajustan en categorías de acuerdo a los protocolos involucrados en el diseño. Una clasificación novedosa se incluye para hacer claridad en los conceptos teóricos involucrados en cada esquema de capa cruzada y para luego agrupar aproximaciones similares evidenciando las diferencias con otras técnicas entre sí. Nuestras conclusiones consideran los aspectos de movilidad y modelamiento del canal en escenarios de WBAN como las direcciones para futura investigación en WBAN y en aplicaciones de telemedicina.ABSTRACT: Cross-layer design is considered a powerful alternative to solve the complexities of wireless communication in wireless body area networks (WBAN), where the classical communication model has been shown to be inaccurate. Regarding the energy consumption problem, we have prepared a current survey of the most relevant scientific publications on energy-efficient cross-layer design for WBAN. In this paper, we provide a comprehensive review of the advances in cross-layer approaches, protocols and optimizations aimed at increasing the network lifetime by saving energy in WBANs. Subsequently, we discuss the relevant aspects and shortcomings of these energy-efficient cross-layer techniques and point out the open research issues and challenges in WBAN cross-layer design. In this survey, we propose a taxonomy for cross-layer approaches to fit them into categories based on the protocols involved in the cross-layer scheme. A novel classification is included to clarify the theoretical concepts behind each cross-layer scheme; and to group similar approaches by establishing their differences from the other strategies reviewed. Our conclusion considers the aspects of mobility and channel modeling in WBAN scenarios as the directions of future cross-layer research for WBAN and telemedicine applications
    corecore