124 research outputs found

    Enhanced Wireless Access Technologies and Experiments for W-CDMA Communications

    Get PDF
    This article reviews enhanced wireless access technologies and experimental evaluations of the wideband DS-CDMA physical layer employing intercell asynchronous operation with a three-step fast cell search method, pilot symbol-assisted coherent links, signal-to-interference plus background noise power ratio-based fast transmit power control, site diversity (soft/softer handover), and transmit diversity in the forward link. The article also presents link-capacity-enhancing techniques such as using an interference canceller and adaptive antenna array diversity receiver/transmitter, and experimental results in a real multipath fading channel. The laboratory and field experiments exemplify superior techniques of the W-CDMA physical layer and the potential of the IC and AAAD transceiver to decrease the mobile transmit power in the reverse link and multipath interference from high-rate users with large transmit power in the forward link

    Multi-carrier CDMA using convolutional coding and interference cancellation

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN016251 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Channel Coding in Molecular Communication

    Get PDF
    This dissertation establishes and analyzes a complete molecular transmission system from a communication engineering perspective. Its focus is on diffusion-based molecular communication in an unbounded three-dimensional fluid medium. As a basis for the investigation of transmission algorithms, an equivalent discrete-time channel model (EDTCM) is developed and the characterization of the channel is described by an analytical derivation, a random walk based simulation, a trained artificial neural network (ANN), and a proof of concept testbed setup. The investigated transmission algorithms cover modulation schemes at the transmitter side, as well as channel equalizers and detectors at the receiver side. In addition to the evaluation of state-of-the-art techniques and the introduction of orthogonal frequency-division multiplexing (OFDM), the novel variable concentration shift keying (VCSK) modulation adapted to the diffusion-based transmission channel, the lowcomplex adaptive threshold detector (ATD) working without explicit channel knowledge, the low-complex soft-output piecewise linear detector (PLD), and the optimal a posteriori probability (APP) detector are of particular importance and treated. To improve the error-prone information transmission, block codes, convolutional codes, line codes, spreading codes and spatial codes are investigated. The analysis is carried out under various approaches of normalization and gains or losses compared to the uncoded transmission are highlighted. In addition to state-of-the-art forward error correction (FEC) codes, novel line codes adapted to the error statistics of the diffusion-based channel are proposed. Moreover, the turbo principle is introduced into the field of molecular communication, where extrinsic information is exchanged iteratively between detector and decoder. By means of an extrinsic information transfer (EXIT) chart analysis, the potential of the iterative processing is shown and the communication channel capacity is computed, which represents the theoretical performance limit for the system under investigation. In addition, the construction of an irregular convolutional code (IRCC) using the EXIT chart is presented and its performance capability is demonstrated. For the evaluation of all considered transmission algorithms the bit error rate (BER) performance is chosen. The BER is determined by means of Monte Carlo simulations and for some algorithms by theoretical derivation

    Spectrally and Energy Efficient Wireless Communications: Signal and System Design, Mathematical Modelling and Optimisation

    Get PDF
    This thesis explores engineering studies and designs aiming to meeting the requirements of enhancing capacity and energy efficiency for next generation communication networks. Challenges of spectrum scarcity and energy constraints are addressed and new technologies are proposed, analytically investigated and examined. The thesis commences by reviewing studies on spectrally and energy-efficient techniques, with a special focus on non-orthogonal multicarrier modulation, particularly spectrally efficient frequency division multiplexing (SEFDM). Rigorous theoretical and mathematical modelling studies of SEFDM are presented. Moreover, to address the potential application of SEFDM under the 5th generation new radio (5G NR) heterogeneous numerologies, simulation-based studies of SEFDM coexisting with orthogonal frequency division multiplexing (OFDM) are conducted. New signal formats and corresponding transceiver structure are designed, using a Hilbert transform filter pair for shaping pulses. Detailed modelling and numerical investigations show that the proposed signal doubles spectral efficiency without performance degradation, with studies of two signal formats; uncoded narrow-band internet of things (NB-IoT) signals and unframed turbo coded multi-carrier signals. The thesis also considers using constellation shaping techniques and SEFDM for capacity enhancement in 5G system. Probabilistic shaping for SEFDM is proposed and modelled to show both transmission energy reduction and bandwidth saving with advantageous flexibility for data rate adaptation. Expanding on constellation shaping to improve performance further, a comparative study of multidimensional modulation techniques is carried out. A four-dimensional signal, with better noise immunity is investigated, for which metaheuristic optimisation algorithms are studied, developed, and conducted to optimise bit-to-symbol mapping. Finally, a specially designed machine learning technique for signal and system design in physical layer communications is proposed, utilising the application of autoencoder-based end-to-end learning. Multidimensional signal modulation with multidimensional constellation shaping is proposed and optimised by using machine learning techniques, demonstrating significant improvement in spectral and energy efficiencies

    Joint Detection and Decoding of High-Order Modulation Schemes for CDMA and OFDM Wireless Communications

    Get PDF
    Wireless communications call for high data rate, power and bandwidth efficient transmissions. High-order modulation schemes are suitable candidates for this purpose as the potential to reduce the symbol period is often limited by the multipath-induced intersymbol interference. In order to reduce the power consumption, and at the same time, to estimate time-variant wireless channels, we propose low-complexity, joint detection and decoding schemes for high-order modulation signals in this dissertation. We start with the iterative demodulation and decoding of high-order CPM signals for mobile communications. A low complexity, pilot symbol-assisted coherent modulation scheme is proposed that can significantly improve the bit error rate performance by efficiently exploiting the inherent memory structure of the CPM modulation. A noncoherent scheme based on multiple symbol differential detection is also proposed and the performances of the two schemes are simulated and compared. Second, two iterative demodulation and decoding schemes are proposed for quadrature amplitude modulated signals in flat fading channels. Both of them make use of the iterative channel estimation based on the data signal reconstructed from decoder output. The difference is that one of them has a threshold controller that only allows the data reconstructed with high reliability values to be used for iterative channel estimation, while the other one directly uses all reconstructed data. As the second scheme has much lower complexity with a performance similar to the best of the first one, we further apply it to the space-time coded CDMA Rake receiver in frequency-selective multipath channels. We will compare it to the pilot-aided demodulation scheme that uses a dedicated pilot signal for channel estimation. In the third part of the dissertation, we design anti-jamming multicarrier communication systems. Two types of jamming signals are considered - the partial-band tone jamming and the partial-time pulse jamming. We propose various iterative schemes to detect, estimate, and cancel the jamming signal in both AWGN and fading channels. Simulation results demonstrate that the proposed systems can provide reliable communications over a wide range of jamming-to-signal power ratios. Last, we study the problem of maximizing the throughput of a cellular multicarrier communication network with transmit or receive diversity. The total throughput of the network is maximized subject to power constraints on each mobile. We first extend the distributed water-pouring power control algorithm from single transmit and receive antenna to multiple transmit and receive antennas. Both equal power diversity and selective diversity are considered. We also propose a centralized power control algorithm based on the active set strategy and the gradient projection method. The performances of the two algorithms are assessed with simulation and compared with the equal power allocation algorithm

    Méthodes d'estimation de canal et de détection itérative pour les communications CDMA

    Get PDF

    Space-time coding for CDMA-based wireless communication systems

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2002Includes bibliographical references (leaves: 72-75)Text in English; Abstract: Turkish and Englishx, 75 leavesMultiple transmit antennas giving rise to diversity (transmit diversity) have been shown to increase downlink (base station to the mobile) capacity in cellular systems.The third generation partnership project (3GPP) for WCDMA has chosen space time transmit diversity (STTD) as the open loop transmit diversity technique for two transmit antennas.On the other hand, the CDMA 2000 has chosen space time spreading (STS) and orthogonal transmit diversity (OTD) as the open loop transmit diversity.In addition to all the standardization aspects, proposed contributions such as space time coding assisted double spread rake receiver (STC-DS-RR) are exist.In this thesis, open loop transmit diversity techniques of 3GPP, CDMA 2000 and existing contributions are investigated.Their performances are compared as a means of biterror- rate (BER) versus signal-to-noise ratio (SNR)

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility
    corecore