367 research outputs found

    Securing NextG networks with physical-layer key generation: A survey

    Get PDF
    As the development of next-generation (NextG) communication networks continues, tremendous devices are accessing the network and the amount of information is exploding. However, with the increase of sensitive data that requires confidentiality to be transmitted and stored in the network, wireless network security risks are further amplified. Physical-layer key generation (PKG) has received extensive attention in security research due to its solid information-theoretic security proof, ease of implementation, and low cost. Nevertheless, the applications of PKG in the NextG networks are still in the preliminary exploration stage. Therefore, we survey existing research and discuss (1) the performance advantages of PKG compared to cryptography schemes, (2) the principles and processes of PKG, as well as research progresses in previous network environments, and (3) new application scenarios and development potential for PKG in NextG communication networks, particularly analyzing the effect and prospects of PKG in massive multiple-input multiple-output (MIMO), reconfigurable intelligent surfaces (RISs), artificial intelligence (AI) enabled networks, integrated space-air-ground network, and quantum communication. Moreover, we summarize open issues and provide new insights into the development trends of PKG in NextG networks

    Towards more intelligent wireless access networks

    Get PDF

    D3.2 First performance results for multi -node/multi -antenna transmission technologies

    Full text link
    This deliverable describes the current results of the multi-node/multi-antenna technologies investigated within METIS and analyses the interactions within and outside Work Package 3. Furthermore, it identifies the most promising technologies based on the current state of obtained results. This document provides a brief overview of the results in its first part. The second part, namely the Appendix, further details the results, describes the simulation alignment efforts conducted in the Work Package and the interaction of the Test Cases. The results described here show that the investigations conducted in Work Package 3 are maturing resulting in valuable innovative solutions for future 5G systems.Fantini. R.; Santos, A.; De Carvalho, E.; Rajatheva, N.; Popovski, P.; Baracca, P.; Aziz, D.... (2014). D3.2 First performance results for multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675

    Aspects of knowledge mining on minimizing drive tests in self-organizing cellular networks

    Get PDF
    The demand for mobile data traffic is about to explode and this drives operators to find ways to further increase the offered capacity in their networks. If networks are deployed in the traditional way, this traffic explosion will be addressed by increasing the number of network elements significantly. This is expected to increase the costs and the complexity of planning, operating and optimizing the networks. To ensure effective and cost-efficient operations, a higher degree of automation and self-organization is needed in the next generation networks. For this reason, the concept of self-organizing networks was introduced in LTE covering multitude of use cases. This was specifically done in the areas of self-configuration, self-optimization and selfhealing of networks. From an operator’s perspective, automated collection and analysis of field measurements while complementing the traditional drive test campaigns is one of the top use cases that can provide significant cost savings in self-organizing networks. This thesis studies the Minimization of Drive Tests in self-organizing cellular networks from three different aspects. The first aspect is network operations, and particularly the network fault management process, as the traditional drive tests are often conducted for troubleshooting purposes. The second aspect is network functionality, and particularly the technical details about the specified measurement and signaling procedures in different network elements that are needed for automating the collection of the field measurement data. The third aspect concerns the analysis of the measurement databases that is a process used for increasing the degree of automation and self-awareness in the networks, and particularly the mathematical means for autonomously finding meaningful patterns of knowledge from huge amounts of data. Although the above mentioned technical areas have been widely discussed in previous literature, it has been done separately and only a few papers discuss how for example, knowledge mining is employed for processing field measurement data in a way that minimizes the drive tests in self-organizing LTE networks. The objective of the thesis is to use well known knowledge mining principles to develop novel self-healing and self-optimization algorithms. These algorithms analyze MDT databases to detect coverage holes, sleeping cells and other geographical areas of anomalous network behavior. The results of the research suggest that by employing knowledge mining in processing the MDT databases, one can acquire knowledge for discriminating between different network problems and detecting anomalous network behavior. For example, downlink coverage optimization is enhanced by classifying RLF reports into coverage, interference and handover problems. Moreover, by incorporating a normalized power headroom report with the MDT reports, better discrimination between uplink coverage problems and the parameterization problems is obtained. Knowledge mining is also used to detect sleeping cells by means of supervised and unsupervised learning. The detection framework is based on a novel approach where diffusion mapping is used to learn about network behavior in its healthy state. The sleeping cells are detected by observing an increase in the number of anomalous reports associated with a certain cell. The association is formed by correlating the geographical location of anomalous reports with the estimated dominance areas of the cells. Moreover, RF fingerprint positioning of the MDT reports is studied and the results suggest that RF fingerprinting can provide a quite detailed location estimation in dense heterogeneous networks. In addition, self-optimization of the mobility state estimation parameters is studied in heterogeneous LTE networks and the results suggest that by gathering MDT measurements and constructing statistical velocity profiles, MSE parameters can be adjusted autonomously, thus resulting in reasonably good classification accuracy. The overall outcome of the thesis is as follows. By automating the classification of the measurement reports between certain problems, network engineers can acquire knowledge about the root causes of the performance degradation in the networks. This saves time and resources and results in a faster decision making process. Due to the faster decision making process the duration of network breaks become shorter and the quality of the network is improved. By taking into account the geographical locations of the anomalous field measurements in the network performance analysis, finer granularity for estimating the location of the problem areas can be achieved. This can further improve the operational decision making that guides the corresponding actions for example, where to start the network optimization. Moreover, by automating the time and resource consuming task of tuning the mobility state estimation parameters, operators can enhance the mobility performance of the high velocity UEs in heterogeneous radio networks in a cost-efficient and backward compatible manner

    Advances in Multi-User Scheduling and Turbo Equalization for Wireless MIMO Systems

    Get PDF
    Nach einer Einleitung behandelt Teil 2 Mehrbenutzer-Scheduling für die Abwärtsstrecke von drahtlosen MIMO Systemen mit einer Sendestation und kanaladaptivem precoding: In jeder Zeit- oder Frequenzressource kann eine andere Nutzergruppe gleichzeitig bedient werden, räumlich getrennt durch unterschiedliche Antennengewichte. Nutzer mit korrelierten Kanälen sollten nicht gleichzeitig bedient werden, da dies die räumliche Trennbarkeit erschwert. Die Summenrate einer Nutzermenge hängt von den Antennengewichten ab, die wiederum von der Nutzerauswahl abhängen. Zur Entkopplung des Problems schlägt diese Arbeit Metriken vor basierend auf einer geschätzten Rate mit ZF precoding. Diese lässt sich mit Hilfe von wiederholten orthogonalen Projektionen abschätzen, wodurch die Berechnung von Antennengewichten beim Scheduling entfällt. Die Ratenschätzung kann basierend auf momentanen Kanalmessungen oder auf gemittelter Kanalkenntnis berechnet werden und es können Datenraten- und Fairness-Kriterien berücksichtig werden. Effiziente Suchalgorithmen werden vorgestellt, die die gesamte Systembandbreite auf einmal bearbeiten können und zur Komplexitätsreduktion die Lösung in Zeit- und Frequenz nachführen können. Teil 3 zeigt wie mehrere Sendestationen koordiniertes Scheduling und kooperative Signalverarbeitung einsetzen können. Mittels orthogonalen Projektionen ist es möglich, Inter-Site Interferenz zu schätzen, ohne Antennengewichte berechnen zu müssen. Durch ein Konzept virtueller Nutzer kann der obige Scheduling-Ansatz auf mehrere Sendestationen und sogar Relays mit SDMA erweitert werden. Auf den benötigten Signalisierungsaufwand wird kurz eingegangen und eine Methode zur Schätzung der Summenrate eines Systems ohne Koordination besprochen. Teil4 entwickelt Optimierungen für Turbo Entzerrer. Diese Nutzen Signalkorrelation als Quelle von Redundanz. Trotzdem kann eine Kombination mit MIMO precoding sinnvoll sein, da bei Annahme realistischer Fehler in der Kanalkenntnis am Sender keine optimale Interferenzunterdrückung möglich ist. Mit Hilfe von EXIT Charts wird eine neuartige Methode zur adaptiven Nutzung von a-priori-Information zwischen Iterationen entwickelt, die die Konvergenz verbessert. Dabei wird gezeigt, wie man semi-blinde Kanalschätzung im EXIT chart berücksichtigen kann. In Computersimulationen werden alle Verfahren basierend auf 4G-Systemparametern überprüft.After an introduction, part 2 of this thesis deals with downlink multi-user scheduling for wireless MIMO systems with one transmitting station performing channel adaptive precoding:Different user subsets can be served in each time or frequency resource by separating them in space with different antenna weight vectors. Users with correlated channel matrices should not be served jointly since correlation impairs the spatial separability.The resulting sum rate for each user subset depends on the precoding weights, which in turn depend on the user subset. This thesis manages to decouple this problem by proposing a scheduling metric based on the rate with ZF precoding such as BD, written with the help of orthogonal projection matrices. It allows estimating rates without computing any antenna weights by using a repeated projection approximation.This rate estimate allows considering user rate requirements and fairness criteria and can work with either instantaneous or long term averaged channel knowledge.Search algorithms are presented to efficiently solve user grouping or selection problems jointly for the entire system bandwidth while being able to track the solution in time and frequency for complexity reduction. Part 3 shows how multiple transmitting stations can benefit from cooperative scheduling or joint signal processing. An orthogonal projection based estimate of the inter-site interference power, again without computing any antenna weights, and a virtual user concept extends the scheduling approach to cooperative base stations and finally included SDMA half-duplex relays in the scheduling.Signalling overhead is discussed and a method to estimate the sum rate without coordination. Part 4 presents optimizations for Turbo Equalizers. There, correlation between user signals can be exploited as a source of redundancy. Nevertheless a combination with transmit precoding which aims at reducing correlation can be beneficial when the channel knowledge at the transmitter contains a realistic error, leading to increased correlation. A novel method for adaptive re-use of a-priori information between is developed to increase convergence by tracking the iterations online with EXIT charts.A method is proposed to model semi-blind channel estimation updates in an EXIT chart. Computer simulations with 4G system parameters illustrate the methods using realistic channel models.Im Buchhandel erhältlich: Advances in Multi-User Scheduling and Turbo Equalization for Wireless MIMO Systems / Fuchs-Lautensack,Martin Ilmenau: ISLE, 2009,116 S. ISBN 978-3-938843-43-

    On Efficient Signal Processing Algorithms for Signal Detection and PAPR Reduction in OFDM Systems

    Get PDF
    The driving force of the study is susceptibility of LS algorithm to noise. As LS algorithm is simple to implement, hence it’s performance improvement can contribute a lot to the wireless technology that are especially deals with high computation. Cascading of AdaBoost algorithm with LS greatly influences the OFDM system performance. Performance of Adaptive Boosting based symbol recovery was investigated on the performance of LS, MMSE, BLUE were also compared with the performance of AdaBoost algorithm and MMSE has been found the higher computational complexity. Furthermore, MMSE also requires apriori channel statistics and computational complexity O(5N3) of the MMSE increases exponentially as the number of carrier increases. For the Adaboost case the computational complexity calculation is little different.Therefore, in the training stage of the AdaBoost algorithm, the computational complexity is only O(nT M) Furthermore, as it is a classification algorithm so in the receiver side we will require a separate de-mapper (or decoder) to get the desired data bits, i.e., a. SAS aided DCT based PAPR reduction 1326 and b. SAS aided DCT based PAPR reduction. A successive addition subtraction preprocessed DCT based PAPR reduction technique was proposed. Here, the performance of proposed method was compared with other preexisting techniques like SLM and PTS and the performance of the proposed method was seen to outperform specially in low PAPR region. In the proposed PAPR reduction method, the receiver is aware of the transmitted signal processing, this enables a reverse operation at the receiver to extract the transmit data. Hence the requirement of sending extra information through extra subcarrier is eliminated. The proposed method is also seen to be spectrally efficient. In the case of PTS and SLM it is inevitable to send the side information to retrieve the transmit signal. Hence, these two methods are spectrally inefficient. Successive addition subtraction based PAPR reduction method was also applied to MIMO systems. The performance of the SAS based PAPR reduction method also showed better performance as compared to other technique. An extensive simulation of MIMO OFDM PAPR reduction was carried out by varying the number of subcarriers and number of transmitter antennas. A detailed computational complexity analysis was also carried out. BATE aided SDMA multi user detection. A detailed study of SDMA system was carried out with it’s mathematical analysis.Many linear and non linear detectors like ML, MMSE, PIC, SIC have been proposed in literature for multiuser detection of SDMA system. However, except MMSE every receivers other are computational extensive. So as to enhance the performance of the MMSE MUD a meta heuristic Bat algorithm was incorporated in cascade with MMSE
    corecore