4,243 research outputs found

    Joint Multi-view Face Alignment in the Wild

    Full text link
    The de facto algorithm for facial landmark estimation involves running a face detector with a subsequent deformable model fitting on the bounding box. This encompasses two basic problems: i) the detection and deformable fitting steps are performed independently, while the detector might not provide best-suited initialisation for the fitting step, ii) the face appearance varies hugely across different poses, which makes the deformable face fitting very challenging and thus distinct models have to be used (\eg, one for profile and one for frontal faces). In this work, we propose the first, to the best of our knowledge, joint multi-view convolutional network to handle large pose variations across faces in-the-wild, and elegantly bridge face detection and facial landmark localisation tasks. Existing joint face detection and landmark localisation methods focus only on a very small set of landmarks. By contrast, our method can detect and align a large number of landmarks for semi-frontal (68 landmarks) and profile (39 landmarks) faces. We evaluate our model on a plethora of datasets including standard static image datasets such as IBUG, 300W, COFW, and the latest Menpo Benchmark for both semi-frontal and profile faces. Significant improvement over state-of-the-art methods on deformable face tracking is witnessed on 300VW benchmark. We also demonstrate state-of-the-art results for face detection on FDDB and MALF datasets.Comment: submit to IEEE Transactions on Image Processin

    Adversarial Occlusion-aware Face Detection

    Full text link
    Occluded face detection is a challenging detection task due to the large appearance variations incurred by various real-world occlusions. This paper introduces an Adversarial Occlusion-aware Face Detector (AOFD) by simultaneously detecting occluded faces and segmenting occluded areas. Specifically, we employ an adversarial training strategy to generate occlusion-like face features that are difficult for a face detector to recognize. Occlusion mask is predicted simultaneously while detecting occluded faces and the occluded area is utilized as an auxiliary instead of being regarded as a hindrance. Moreover, the supervisory signals from the segmentation branch will reversely affect the features, aiding in detecting heavily-occluded faces accordingly. Consequently, AOFD is able to find the faces with few exposed facial landmarks with very high confidences and keeps high detection accuracy even for masked faces. Extensive experiments demonstrate that AOFD not only significantly outperforms state-of-the-art methods on the MAFA occluded face detection dataset, but also achieves competitive detection accuracy on benchmark dataset for general face detection such as FDDB.Comment: Accepted by ACPR201

    UA-DETRAC: A New Benchmark and Protocol for Multi-Object Detection and Tracking

    Full text link
    In recent years, numerous effective multi-object tracking (MOT) methods are developed because of the wide range of applications. Existing performance evaluations of MOT methods usually separate the object tracking step from the object detection step by using the same fixed object detection results for comparisons. In this work, we perform a comprehensive quantitative study on the effects of object detection accuracy to the overall MOT performance, using the new large-scale University at Albany DETection and tRACking (UA-DETRAC) benchmark dataset. The UA-DETRAC benchmark dataset consists of 100 challenging video sequences captured from real-world traffic scenes (over 140,000 frames with rich annotations, including occlusion, weather, vehicle category, truncation, and vehicle bounding boxes) for object detection, object tracking and MOT system. We evaluate complete MOT systems constructed from combinations of state-of-the-art object detection and object tracking methods. Our analysis shows the complex effects of object detection accuracy on MOT system performance. Based on these observations, we propose new evaluation tools and metrics for MOT systems that consider both object detection and object tracking for comprehensive analysis.Comment: 18 pages, 11 figures, accepted by CVI

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    A Survey on Ear Biometrics

    No full text
    Recognizing people by their ear has recently received significant attention in the literature. Several reasons account for this trend: first, ear recognition does not suffer from some problems associated with other non contact biometrics, such as face recognition; second, it is the most promising candidate for combination with the face in the context of multi-pose face recognition; and third, the ear can be used for human recognition in surveillance videos where the face may be occluded completely or in part. Further, the ear appears to degrade little with age. Even though, current ear detection and recognition systems have reached a certain level of maturity, their success is limited to controlled indoor conditions. In addition to variation in illumination, other open research problems include hair occlusion; earprint forensics; ear symmetry; ear classification; and ear individuality. This paper provides a detailed survey of research conducted in ear detection and recognition. It provides an up-to-date review of the existing literature revealing the current state-of-art for not only those who are working in this area but also for those who might exploit this new approach. Furthermore, it offers insights into some unsolved ear recognition problems as well as ear databases available for researchers

    Multi-Face Tracking by Extended Bag-of-Tracklets in Egocentric Videos

    Full text link
    Wearable cameras offer a hands-free way to record egocentric images of daily experiences, where social events are of special interest. The first step towards detection of social events is to track the appearance of multiple persons involved in it. In this paper, we propose a novel method to find correspondences of multiple faces in low temporal resolution egocentric videos acquired through a wearable camera. This kind of photo-stream imposes additional challenges to the multi-tracking problem with respect to conventional videos. Due to the free motion of the camera and to its low temporal resolution, abrupt changes in the field of view, in illumination condition and in the target location are highly frequent. To overcome such difficulties, we propose a multi-face tracking method that generates a set of tracklets through finding correspondences along the whole sequence for each detected face and takes advantage of the tracklets redundancy to deal with unreliable ones. Similar tracklets are grouped into the so called extended bag-of-tracklets (eBoT), which is aimed to correspond to a specific person. Finally, a prototype tracklet is extracted for each eBoT, where the occurred occlusions are estimated by relying on a new measure of confidence. We validated our approach over an extensive dataset of egocentric photo-streams and compared it to state of the art methods, demonstrating its effectiveness and robustness.Comment: 27 pages, 18 figures, submitted to computer vision and image understanding journa

    People Counting in Crowded and Outdoor Scenes using a Hybrid Multi-Camera Approach

    Full text link
    This paper presents two novel approaches for people counting in crowded and open environments that combine the information gathered by multiple views. Multiple camera are used to expand the field of view as well as to mitigate the problem of occlusion that commonly affects the performance of counting methods using single cameras. The first approach is regarded as a direct approach and it attempts to segment and count each individual in the crowd. For such an aim, two head detectors trained with head images are employed: one based on support vector machines and another based on Adaboost perceptron. The second approach, regarded as an indirect approach employs learning algorithms and statistical analysis on the whole crowd to achieve counting. For such an aim, corner points are extracted from groups of people in a foreground image and computed by a learning algorithm which estimates the number of people in the scene. Both approaches count the number of people on the scene and not only on a given image or video frame of the scene. The experimental results obtained on the benchmark PETS2009 video dataset show that proposed indirect method surpasses other methods with improvements of up to 46.7% and provides accurate counting results for the crowded scenes. On the other hand, the direct method shows high error rates due to the fact that the latter has much more complex problems to solve, such as segmentation of heads

    Improved Selective Refinement Network for Face Detection

    Full text link
    As a long-standing problem in computer vision, face detection has attracted much attention in recent decades for its practical applications. With the availability of face detection benchmark WIDER FACE dataset, much of the progresses have been made by various algorithms in recent years. Among them, the Selective Refinement Network (SRN) face detector introduces the two-step classification and regression operations selectively into an anchor-based face detector to reduce false positives and improve location accuracy simultaneously. Moreover, it designs a receptive field enhancement block to provide more diverse receptive field. In this report, to further improve the performance of SRN, we exploit some existing techniques via extensive experiments, including new data augmentation strategy, improved backbone network, MS COCO pretraining, decoupled classification module, segmentation branch and Squeeze-and-Excitation block. Some of these techniques bring performance improvements, while few of them do not well adapt to our baseline. As a consequence, we present an improved SRN face detector by combining these useful techniques together and obtain the best performance on widely used face detection benchmark WIDER FACE dataset.Comment: Technical report, 8 pages, 6 figure

    Recognizing Partial Biometric Patterns

    Full text link
    Biometric recognition on partial captured targets is challenging, where only several partial observations of objects are available for matching. In this area, deep learning based methods are widely applied to match these partial captured objects caused by occlusions, variations of postures or just partial out of view in person re-identification and partial face recognition. However, most current methods are not able to identify an individual in case that some parts of the object are not obtainable, while the rest are specialized to certain constrained scenarios. To this end, we propose a robust general framework for arbitrary biometric matching scenarios without the limitations of alignment as well as the size of inputs. We introduce a feature post-processing step to handle the feature maps from FCN and a dictionary learning based Spatial Feature Reconstruction (SFR) to match different sized feature maps in this work. Moreover, the batch hard triplet loss function is applied to optimize the model. The applicability and effectiveness of the proposed method are demonstrated by the results from experiments on three person re-identification datasets (Market1501, CUHK03, DukeMTMC-reID), two partial person datasets (Partial REID and Partial iLIDS) and two partial face datasets (CASIA-NIR-Distance and Partial LFW), on which state-of-the-art performance is ensured in comparison with several state-of-the-art approaches. The code is released online and can be found on the website: https://github.com/lingxiao-he/Partial-Person-ReID.Comment: 13 pages, 11 figure

    Can We Boost the Power of the Viola-Jones Face Detector Using Pre-processing? An Empirical Study

    Full text link
    The Viola-Jones face detection algorithm was (and still is) a quite popular face detector. In spite of the numerous face detection techniques that have been recently presented, there are many research works that are still based on the Viola-Jones algorithm because of its simplicity. In this paper, we study the influence of a set of blind pre-processing methods on the face detection rate using the Viola-Jones algorithm. We focus on two aspects of improvement, specifically badly illuminated faces and blurred faces. Many methods for lighting invariant and deblurring are used in order to improve the detection accuracy. We want to avoid using blind pre-processing methods that may obstruct the face detector. To that end, we perform two sets of experiments. The first set is performed to avoid any blind pre-processing method that may hurt the face detector. The second set is performed to study the effect of the selected pre-processing methods on images that suffer from hard conditions. We present two manners of applying the pre-processing method to the image prior to being used by the Viola-Jones face detector. Four different datasets are used to draw a coherent conclusion about the potential improvement caused by using prior enhanced images. The results demonstrate that some of the pre-processing methods may hurt the accuracy of Viola-Jones face detection algorithm. However, other pre-processing methods have an evident positive impact on the accuracy of the face detector. Overall, we recommend three simple and fast blind photometric normalization methods as a pre-processing step in order to improve the accuracy of the pre-trained Viola-Jones face detector.Comment: 14 pages, 10 figures, 8 table
    corecore