1,365 research outputs found

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art and Challenges

    Get PDF
    International audienceInformation-Centric Networking (ICN) has been proposed as one of the future Internet architectures. It is poised to address the challenges faced by today's Internet that include, but not limited to, scalability, addressing, security, and privacy. Furthermore, it also aims at meeting the requirements for new emerging Internet applications. To realize ICN, Named Data Networking (NDN) is one of the recent implementations of ICN that provides a suitable communication approach due to its clean slate design and simple communication model. There are a plethora of applications realized through ICN in different domains where data is the focal point of communication. One such domain is Intelligent Transportation System (ITS) realized through Vehicular Ad hoc NETwork (VANET) where vehicles exchange information and content with each other and with the infrastructure. To date, excellent research results have been yielded in the VANET domain aiming at safe, reliable, and infotainment-rich driving experience. However, due to the dynamic topologies, host-centric model, and ephemeral nature of vehicular communication, various challenges are faced by VANET that hinder the realization of successful vehicular networks and adversely affect the data dissemination, content delivery, and user experiences. To fill these gaps, NDN has been extensively used as underlying communication paradigm for VANET. Inspired by the extensive research results in NDN-based VANET, in this paper, we provide a detailed and systematic review of NDN-driven VANET. More precisely, we investigate the role of NDN in VANET and discuss the feasibility of NDN architecture in VANET environment. Subsequently, we cover in detail, NDN-based naming, routing and forwarding, caching, mobility, and security mechanism for VANET. Furthermore, we discuss the existing standards, solutions, and simulation tools used in NDN-based VANET. Finally, we also identify open challenges and issues faced by NDN-driven VANET and highlight future research directions that should be addressed by the research community

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    A Comparative Study on Routing schemes for Wireless Network

    Get PDF
    Ubiquitous smart devices with embedded sensors are paving the way for mobile ad hoc networks (ad-hoc network) that enable users to communicate directly, thereby playing a key role in Smart City and Internet of Things applications. In such smart environments, people with smart devices (nodes) can freely self-organize and form self-configuring ad-hoc network to send and forward data packets to a destination over multiple hops via intermediate nodes. Wireless Networks includes a larger advantage in today’s communication application like environmental, traffic, military, and health observation. To realize these applications it's necessary to possess a reliable routing protocol. The main motivation of this paper is to review various routing schemes in ad-hoc network that have recently been proposed to enhance throughput when transmitting and receiving packets during active communication. The review covers various state-of-the-art protocols for each category and highlights their operation concepts, design challenges and key features. In addition, the performance evaluation metrics are also discussed

    Wireless Heterogeneous Networks and Next Generation Internet

    Get PDF
    The recent advances in wireless access technologies as well as the increasing number of mobile applications have made Wireless Internet a reality. A wide variety of bandwidth demanding services including high speed data delivery and multimedia communication have been materialized through the convergence of the next generation Internet and heterogeneous wireless networks. However, providing even higher bandwidth and richer applications necessitates a fundamental understanding of wireless Internet architecture and the interactions between heterogeneous users. Consequently, fundamental advances in many concepts of the wireless Internet are required for the ultimate goal of communication anytime anywhere. This special issue of the ACM Mobile Networks and Applications Journal is dedicated to the recent advances in the area of Wireless Internet. We accepted 10 papers out of 59 submissions from all over the world with a 17% acceptance rate. Papers describing management schemes, protocols, models, evaluation methods, and experimental studies of Wireless Internet are included in this special issue to provide a broad view of recent advances in this field

    Design and Implementation of a Communication Protocol to Improve Multimedia QoS and QoE in Wireless Ad Hoc Networks

    Full text link
    [EN] This dissertation addresses the problem of multimedia delivery over multi-hop ad hoc wireless networks, and especially over wireless sensor networks. Due to their characteristics of low power consumption, low processing capacity and low memory capacity, they have major difficulties in achieving optimal quality levels demanded by end users in such communications. In the first part of this work, it has been carried out a study to determine the behavior of a variety of multimedia streams and how they are affected by the network conditions when they are transmitted over topologies formed by devices of different technologies in multi hop wireless ad hoc mode. To achieve this goal, we have performed experimental tests using a test bench, which combine the main codecs used in audio and video streaming over IP networks with different sound and video captures representing the characteristic patterns of multimedia services such as phone calls, video communications, IPTV and video on demand (VOD). With the information gathered in the laboratory, we have been able to establish the correlation between the induced changes in the physical and logical topology and the network parameters that measure the quality of service (QoS) of a multimedia transmission, such as latency, jitter or packet loss. At this stage of the investigation, a study was performed to determine the state of the art of the proposed protocols, algorithms, and practical implementations that have been explicitly developed to optimize the multimedia transmission over wireless ad hoc networks, especially in ad hoc networks using clusters of nodes distributed over a geographic area and wireless sensor networks. Next step of this research was the development of an algorithm focused on the logical organization of clusters formed by nodes capable of adapting to the circumstances of real-time traffic. The stated goal was to achieve the maximum utilization of the resources offered by the set of nodes that forms the network, allowing simultaneously sending reliably and efficiently all types of content through them, and mixing conventional IP data traffic with multimedia traffic with stringent QoS and QoE requirements. Using the information gathered in the previous phase, we have developed a network architecture that improves overall network performance and multimedia streaming. In parallel, it has been designed and programmed a communication protocol that allows implementing the proposal and testing its operation on real network infrastructures. In the last phase of this thesis we have focused our work on sending multimedia in wireless sensor networks (WSN). Based on the above results, we have adapted both the architecture and the communication protocol for this particular type of network, whose use has been growing hugely in recent years.[ES] Esta tesis doctoral aborda el problema de la distribución de contenidos multimedia a través de redes inalámbricas ad hoc multisalto, especialmente las redes inalámbricas de sensores que, debido a sus características de bajo consumo energético, baja capacidad de procesamiento y baja capacidad de memoria, plantean grandes dificultades para alcanzar los niveles de calidad óptimos que exigen los usuarios finales en dicho tipo de comunicaciones. En la primera parte de este trabajo se ha llevado a cabo un estudio para determinar el comportamiento de una gran variedad de flujos multimedia y como se ven afectados por las condiciones de la red cuando son transmitidos a través topologías formadas por dispositivos de diferentes tecnologías que se comunican en modo ad hoc multisalto inalámbrico. Para ello, se han realizado pruebas experimentales sobre una maqueta de laboratorio, combinando los principales códecs empleados en la transmisión de audio y video a través de redes IP con diversas capturas de sonido y video que representan patrones característicos de servicios multimedia tales como las llamadas telefónicas, videoconferencias, IPTV o video bajo demanda (VOD). Con la información reunida en el laboratorio se ha podido establecer la correlación entre los cambios inducidos en la topología física y lógica de la red con los parámetros que miden la calidad de servicio (QoS) de una transmisión multimedia, tales como la latencia el jitter o la pérdida de paquetes. En esta fase de la investigación se realiza un estudio para determinar el estado del arte de las propuestas de desarrollo e implementación de protocolos y algoritmos que se han generado de forma explícita para optimizar la transmisión de tráfico multimedia sobre redes ad hoc inalámbricas, especialmente en las redes inalámbricas de sensores y redes ad hoc utilizando clústeres de nodos distribuidos en un espacio geográfico. El siguiente paso en la investigación ha consistido en el desarrollo de un algoritmo propio para la organización lógica de clústeres formados por nodos capaces de adaptarse a las circunstancias del tráfico en tiempo real. El objetivo planteado es conseguir un aprovechamiento máximo de los recursos ofrecidos por el conjunto de nodos que forman la red, permitiendo de forma simultánea el envío de todo tipo de contenidos a través de ellos de forma confiable y eficiente, permitiendo la convivencia de tráfico de datos IP convencional con tráfico multimedia con requisitos exigentes de QoS y QoE. A partir de la información conseguida en la fase anterior, se ha desarrollado una arquitectura de red que mejora el rendimiento general de la red y el de las transmisiones multimedia de audio y video en particular. De forma paralela, se ha diseñado y programado un protocolo de comunicación que permite implementar el modelo y testear su funcionamiento sobre infraestructuras de red reales. En la última fase de esta tesis se ha dirigido la atención hacia la transmisión multimedia en las redes de sensores inalámbricos (WSN). Partiendo de los resultados anteriores, se ha adaptado tanto la arquitectura como el protocolo de comunicaciones para este tipo concreto de red, cuyo uso se ha extendido en los últimos años de forma considerable[CA] Esta tesi doctoral aborda el problema de la distribució de continguts multimèdia a través de xarxes sense fil ad hoc multi salt, especialment les xarxes sense fil de sensors que, a causa de les seues característiques de baix consum energètic, baixa capacitat de processament i baixa capacitat de memòria, plantegen grans dificultats per a aconseguir els nivells de qualitat òptims que exigixen els usuaris finals en eixos tipus de comunicacions. En la primera part d'este treball s'ha dut a terme un estudi per a determinar el comportament d'una gran varietat de fluxos multimèdia i com es veuen afectats per les condicions de la xarxa quan són transmesos a través topologies formades per dispositius de diferents tecnologies que es comuniquen en mode ad hoc multi salt sense fil. Per a això, s'han realitzat proves experimentals sobre una maqueta de laboratori, combinant els principals códecs empleats en la transmissió d'àudio i vídeo a través de xarxes IP amb diverses captures de so i vídeo que representen patrons característics de serveis multimèdia com son les cridades telefòniques, videoconferències, IPTV o vídeo baix demanda (VOD). Amb la informació reunida en el laboratori s'ha pogut establir la correlació entre els canvis induïts en la topologia física i lògica de la xarxa amb els paràmetres que mesuren la qualitat de servei (QoS) d'una transmissió multimèdia, com la latència el jitter o la pèrdua de paquets. En esta fase de la investigació es realitza un estudi per a determinar l'estat de l'art de les propostes de desenvolupament i implementació de protocols i algoritmes que s'han generat de forma explícita per a optimitzar la transmissió de tràfic multimèdia sobre xarxes ad hoc sense fil, especialment en les xarxes sense fil de sensors and xarxes ad hoc utilitzant clusters de nodes distribuïts en un espai geogràfic. El següent pas en la investigació ha consistit en el desenvolupament d'un algoritme propi per a l'organització lògica de clusters formats per nodes capaços d'adaptar-se a les circumstàncies del tràfic en temps real. L'objectiu plantejat és aconseguir un aprofitament màxim dels recursos oferits pel conjunt de nodes que formen la xarxa, permetent de forma simultània l'enviament de qualsevol tipus de continguts a través d'ells de forma confiable i eficient, permetent la convivència de tràfic de dades IP convencional amb tràfic multimèdia amb requisits exigents de QoS i QoE. A partir de la informació aconseguida en la fase anterior, s'ha desenvolupat una arquitectura de xarxa que millora el rendiment general de la xarxa i el de les transmissions multimèdia d'àudio i vídeo en particular. De forma paral¿lela, s'ha dissenyat i programat un protocol de comunicació que permet implementar el model i testejar el seu funcionament sobre infraestructures de xarxa reals. En l'última fase d'esta tesi s'ha dirigit l'atenció cap a la transmissió multimèdia en les xarxes de sensors sense fil (WSN). Partint dels resultats anteriors, s'ha adaptat tant l'arquitectura com el protocol de comunicacions per a aquest tipus concret de xarxa, l'ús del qual s'ha estés en els últims anys de forma considerable.Díaz Santos, JR. (2016). Design and Implementation of a Communication Protocol to Improve Multimedia QoS and QoE in Wireless Ad Hoc Networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/62162TESI

    Improving routing performance of multipath ad hoc on-demand distance vector in mobile add hoc networks.

    Get PDF
    The aim of this research is to improve routing fault tolerance in Mobile Ad hoc Networks (MANETs) by optimising mUltipath routing in a well-studied reactive and single path routing protocol known as Ad hoc On-demand Distance Vector (AODV). The research also aims to prove the effect of varying waiting time of Route Reply (RREP) procedure and utilising the concept of efficient routes on the performance of multipath extensions to AODV. Two novel multipath routing approaches are developed in this thesis as new extensions to AODV to optimise routing overhead by improving Route Discovery Process (RDP) and Route Maintenance Process (RMP) of multipath AODV. The first approach is a Iinkdisjoint multipath extension called 'Thresho)d efficient Routes in multipath AODV' (TRAODV) that optimises routing packets ~verhead by improving the RDP of AODV which is achieved by detecting the waiting time required for RREP procedure to receive a threshold number of efficient routes. The second approach is also a link-disjoint mUltipath extension called 'On-demand Route maintenance in Multipath AoDv' (ORMAD) which is an extension to TRAODV that optimises routing packets and delay overhead by improving the RMP of TRAODV. ORMAD applies the concepts of threshold waiting time and efficient routes to both phases RDP and RMP. It also applies RMP only to efficient routes which are selected in the RDP and when a route fails, it invokes a local repair procedure between upstream and downstream nodes of the broken link. This mechanism produces a set of alternative subroutes with less number of hops which enhances route efficiency and consequently minimises the routing overhead. TRAODV and ORMAD are implemented and evaluated against two existing multipath extensions to,AODV protocol and two traditional multipath protocols. The existing extensions to AODV used in the evaluation are a well-known protocol called Ad hoc On-demand Multipath Distance Vector (AOMDV) and a recent extension called Multiple Route AODV (MRAODV) protocol which is extended in this thesis to the new approach TRAODV while the traditional multipath protocols used in the evaluation are Dynamic Source Routing (DSR) and Temporally Ordered Routing Algorithm (TORA). Protocols are implemented using NS2 and evaluated under the same simulation environment in terms of four performance metrics; packet delivery fraction, average end-to-end delay, routing packets overhead, and throughput. Simulation results of TRAODV evaluation show that the average number of routes stored in a routing table of MRAODV protocol is always larger than the average number of routes in TRAODV. Simulation results show that TRAODV reduces the overall routing packets overhead compared to both extensions AOMDV and MRAODV, especially for large network size and high mobility. A vital drawback of TRAODV is that its performance is reduced compared to AOMDV and MRAODV in terms of average end-to-end delay. Additionally, TORA still outperforms TRAODV and the other extensions to AODV in terms of routing packets overhead. In order to overcome the drawbacks of TRAODV, ORMAD is developed by improving the RDP of TRAODV. The performance of ORMAD is evaluated against RREP waiting time using the idea of utilising the efficient routes in both phases RDP and RMP. Simulation results of ORMAD show that the performance is affected by varying the two RREP waiting times of both RDP and RMP in different scenarios. As shown by the simulation results, applying the short and long waiting times in both phases tends to less performance in terms of routing packets overhead while applying the moderate waiting times tends to better performance. ORMAD enhances routing packets overhead and the average end-to-end delay compared to TRAODV, especially in high mobility scenarios. ORMAD has the closest performance to TORA protocol in terms of routing packets overhead compared to ~M~a~M~OW . Relevant concepts are formalised for ORMAD approach and conducted as an analytical model in this thesis involving the\vhole process of multipath routing in AODV extensions. ORMAD analytical model describes how the two phases RDP and RMP interact with each other with regard to two performance metrics; total number of detected routes and Route Efficiency.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Study and analysis of mobility, security, and caching issues in CCN

    Get PDF
    Existing architecture of Internet is IP-centric, having capability to cope with the needs of the Internet users. Due to the recent advancements and emerging technologies, a need to have ubiquitous connectivity has become the primary focus. Increasing demands for location-independent content raised the requirement of a new architecture and hence it became a research challenge. Content Centric Networking (CCN) paradigm emerges as an alternative to IP-centric model and is based on name-based forwarding and in-network data caching. It is likely to address certain challenges that have not been solved by IP-based protocols in wireless networks. Three important factors that require significant research related to CCN are mobility, security, and caching. While a number of studies have been conducted on CCN and its proposed technologies, none of the studies target all three significant research directions in a single article, to the best of our knowledge. This paper is an attempt to discuss the three factors together within context of each other. In this paper, we discuss and analyze basics of CCN principles with distributed properties of caching, mobility, and secure access control. Different comparisons are made to examine the strengths and weaknesses of each aforementioned aspect in detail. The final discussion aims to identify the open research challenges and some future trends for CCN deployment on a large scale

    Information-centric communication in mobile and wireless networks

    Get PDF
    Information-centric networking (ICN) is a new communication paradigm that has been proposed to cope with drawbacks of host-based communication protocols, namely scalability and security. In this thesis, we base our work on Named Data Networking (NDN), which is a popular ICN architecture, and investigate NDN in the context of wireless and mobile ad hoc networks. In a first part, we focus on NDN efficiency (and potential improvements) in wireless environments by investigating NDN in wireless one-hop communication, i.e., without any routing protocols. A basic requirement to initiate informationcentric communication is the knowledge of existing and available content names. Therefore, we develop three opportunistic content discovery algorithms and evaluate them in diverse scenarios for different node densities and content distributions. After content names are known, requesters can retrieve content opportunistically from any neighbor node that provides the content. However, in case of short contact times to content sources, content retrieval may be disrupted. Therefore, we develop a requester application that keeps meta information of disrupted content retrievals and enables resume operations when a new content source has been found. Besides message efficiency, we also evaluate power consumption of information-centric broadcast and unicast communication. Based on our findings, we develop two mechanisms to increase efficiency of information-centric wireless one-hop communication. The first approach called Dynamic Unicast (DU) avoids broadcast communication whenever possible since broadcast transmissions result in more duplicate Data transmissions, lower data rates and higher energy consumption on mobile nodes, which are not interested in overheard Data, compared to unicast communication. Hence, DU uses broadcast communication only until a content source has been found and then retrieves content directly via unicast from the same source. The second approach called RC-NDN targets efficiency of wireless broadcast communication by reducing the number of duplicate Data transmissions. In particular, RC-NDN is a Data encoding scheme for content sources that increases diversity in wireless broadcast transmissions such that multiple concurrent requesters can profit from each others’ (overheard) message transmissions. If requesters and content sources are not in one-hop distance to each other, requests need to be forwarded via multi-hop routing. Therefore, in a second part of this thesis, we investigate information-centric wireless multi-hop communication. First, we consider multi-hop broadcast communication in the context of rather static community networks. We introduce the concept of preferred forwarders, which relay Interest messages slightly faster than non-preferred forwarders to reduce redundant duplicate message transmissions. While this approach works well in static networks, the performance may degrade in mobile networks if preferred forwarders may regularly move away. Thus, to enable routing in mobile ad hoc networks, we extend DU for multi-hop communication. Compared to one-hop communication, multi-hop DU requires efficient path update mechanisms (since multi-hop paths may expire quickly) and new forwarding strategies to maintain NDN benefits (request aggregation and caching) such that only a few messages need to be transmitted over the entire end-to-end path even in case of multiple concurrent requesters. To perform quick retransmission in case of collisions or other transmission errors, we implement and evaluate retransmission timers from related work and compare them to CCNTimer, which is a new algorithm that enables shorter content retrieval times in information-centric wireless multi-hop communication. Yet, in case of intermittent connectivity between requesters and content sources, multi-hop routing protocols may not work because they require continuous end-to-end paths. Therefore, we present agent-based content retrieval (ACR) for delay-tolerant networks. In ACR, requester nodes can delegate content retrieval to mobile agent nodes, which move closer to content sources, can retrieve content and return it to requesters. Thus, ACR exploits the mobility of agent nodes to retrieve content from remote locations. To enable delay-tolerant communication via agents, retrieved content needs to be stored persistently such that requesters can verify its authenticity via original publisher signatures. To achieve this, we develop a persistent caching concept that maintains received popular content in repositories and deletes unpopular content if free space is required. Since our persistent caching concept can complement regular short-term caching in the content store, it can also be used for network caching to store popular delay-tolerant content at edge routers (to reduce network traffic and improve network performance) while real-time traffic can still be maintained and served from the content store
    corecore