1,545 research outputs found

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Optimal coverage multi-path scheduling scheme with multiple mobile sinks for WSNs

    Get PDF
    Wireless Sensor Networks (WSNs) are usually formed with many tiny sensors which are randomly deployed within sensing field for target monitoring. These sensors can transmit their monitored data to the sink in a multi-hop communication manner. However, the ‘hot spots’ problem will be caused since nodes near sink will consume more energy during forwarding. Recently, mobile sink based technology provides an alternative solution for the long-distance communication and sensor nodes only need to use single hop communication to the mobile sink during data transmission. Even though it is difficult to consider many network metrics such as sensor position, residual energy and coverage rate etc., it is still very important to schedule a reasonable moving trajectory for the mobile sink. In this paper, a novel trajectory scheduling method based on coverage rate for multiple mobile sinks (TSCR-M) is presented especially for large-scale WSNs. An improved particle swarm optimization (PSO) combined with mutation operator is introduced to search the parking positions with optimal coverage rate. Then the genetic algorithm (GA) is adopted to schedule the moving trajectory for multiple mobile sinks. Extensive simulations are performed to validate the performance of our proposed method

    A mobile assisted coverage hole patching scheme based on particle swarm optimization for WSNs

    Get PDF
    Wireless sensor networks (WSNs) have drawn much research attention in recent years due to the superior performance in multiple applications, such as military and industrial monitoring, smart home, disaster restoration etc. In such applications, massive sensor nodes are randomly deployed and they remain static after the deployment, to fully cover the target sensing area. This will usually cause coverage redundancy or coverage hole problem. In order to effectively deploy sensors to cover whole area, we present a novel node deployment algorithm based on mobile sensors. First, sensor nodes are randomly deployed in target area, and they remain static or switch to the sleep mode after deployment. Second, we partition the network into grids and calculate the coverage rate of each grid. We select grids with lower coverage rate as candidate grids. Finally, we awake mobile sensors from sleep mode to fix coverage hole, particle swarm optimization (PSO) algorithm is used to calculate moving position of mobile sensors. Simulation results show that our algorithm can effectively improve the coverage rate of WSNs

    Deployment, Coverage And Network Optimization In Wireless Video Sensor Networks For 3D Indoor Monitoring

    Get PDF
    As a result of extensive research over the past decade or so, wireless sensor networks (wsns) have evolved into a well established technology for industry, environmental and medical applications. However, traditional wsns employ such sensors as thermal or photo light resistors that are often modeled with simple omni-directional sensing ranges, which focus only on scalar data within the sensing environment. In contrast, the sensing range of a wireless video sensor is directional and capable of providing more detailed video information about the sensing field. Additionally, with the introduction of modern features in non-fixed focus cameras such as the pan, tilt and zoom (ptz), the sensing range of a video sensor can be further regarded as a fan-shape in 2d and pyramid-shape in 3d. Such uniqueness attributed to wireless video sensors and the challenges associated with deployment restrictions of indoor monitoring make the traditional sensor coverage, deployment and networked solutions in 2d sensing model environments for wsns ineffective and inapplicable in solving the wireless video sensor network (wvsn) issues for 3d indoor space, thus calling for novel solutions. In this dissertation, we propose optimization techniques and develop solutions that will address the coverage, deployment and network issues associated within wireless video sensor networks for a 3d indoor environment. We first model the general problem in a continuous 3d space to minimize the total number of required video sensors to monitor a given 3d indoor region. We then convert it into a discrete version problem by incorporating 3d grids, which can achieve arbitrary approximation precision by adjusting the grid granularity. Due in part to the uniqueness of the visual sensor directional sensing range, we propose to exploit the directional feature to determine the optimal angular-coverage of each deployed visual sensor. Thus, we propose to deploy the visual sensors from divergent directional angles and further extend k-coverage to ``k-angular-coverage\u27\u27, while ensuring connectivity within the network. We then propose a series of mechanisms to handle obstacles in the 3d environment. We develop efficient greedy heuristic solutions that integrate all these aforementioned considerations one by one and can yield high quality results. Based on this, we also propose enhanced depth first search (dfs) algorithms that can not only further improve the solution quality, but also return optimal results if given enough time. Our extensive simulations demonstrate the superiority of both our greedy heuristic and enhanced dfs solutions. Finally, this dissertation discusses some future research directions such as in-network traffic routing and scheduling issues

    Clustered wireless sensor networks

    Get PDF
    The study of topology in randomly deployed wireless sensor networks (WSNs) is important in addressing the fundamental issue of stochastic coverage resulting from randomness in the deployment procedure and power management algorithms. This dissertation defines and studies clustered WSNs, WSNs whose topology due to the deployment procedure and the application requirements results in the phenomenon of clustering or clumping of nodes. The first part of this dissertation analyzes a range of topologies of clustered WSNs and their impact on the primary sensing objectives of coverage and connectivity. By exploiting the inherent advantages of clustered topologies of nodes, this dissertation presents techniques for optimizing the primary performance metrics of power consumption and network capacity. It analyzes clustering in the presence of obstacles, and studies varying levels of redundancy to determine the probability of coverage in the network. The proposed models for clustered WSNs embrace the domain of a wide range of topologies that are prevalent in actual real-world deployment scenarios, and call for clustering-specific protocols to enhance network performance. It has been shown that power management algorithms tailored to various clustering scenarios optimize the level of active coverage and maximize the network lifetime. The second part of this dissertation addresses the problem of edge effects and heavy traffic on queuing in clustered WSNs. In particular, an admission control model called directed ignoring model has been developed that aims to minimize the impact of edge effects in queuing by improving queuing metrics such as packet loss and wait time

    Intrusion Detection Mechanism for Empowered Intruders Using IDEI

    Get PDF
    In the past, intrusion detection has been extensively investigated as a means of ensuring the security of wireless sensor networks. Anti-recon technology has made it possible for an attacker to get knowledge about the detecting nodes and plot a route around them in order to evade detection. An "empowered intruder" is one who poses new threats to current intrusion detection technologies. Furthermore, the intended impact of detection may not be obtained in certain subareas owing to gaps in coverage caused by the initial deployment of detection nodes at random. A vehicle collaboration sensing network model is proposed to solve these difficulties, in which mobile sensing cars and static sensor nodes work together to identify intrusions by empowered intruders. An algorithm for mobile sensing vehicles, called Intrusion Detection Mechanism for Empowered Intruders(IDEI), and a sleep-scheduling technique for static nodes form the basis of our proposal. Sophisticated intruders will be tracked by mobile sensors, which will fill in the gaps in coverage, while static nodes follow a sleep schedule and will be woken when the intruder is discovered close. Our solution is compared to current techniques like Kinetic Theory Based Mobile Sensor Network (KMsn)and Mean Time to Attacks (MTTA) in terms of intrusion detection performance, energy usage, and sensor node movement distance. IDEI's parameter sensitivity is also examined via comprehensive simulations. It is clear from the theoretical analysis and simulation findings that our idea is more efficient and available

    Mitigating the Event and Effect of Energy Holes in Multi-hop Wireless Sensor Networks Using an Ultra-Low Power Wake-up Receiver and an Energy Scheduling Technique

    Get PDF
    This research work presents an algorithm for extending network lifetime in multi-hop wireless sensor networks (WSN). WSNs face energy gap issues around sink nodes due to the transmission of large amounts of data through nearby sensor nodes. The limited power supply to the nodes limits the lifetime of the network, which makes energy efficiency crucial. Multi-hop communication has been proposed as an efficient strategy, but its power consumption remains a research challenge. In this study, an algorithm is developed to mitigate energy holes around the sink nodes by using a modified ultra-low-power wake-up receiver and an energy scheduling technique. Efficient power scheduling reduces the power consumption of the relay node, and when the residual power of the sensor node falls below a defined threshold, the power emitters charge the nodes to eliminate energy-hole problems. The modified wake-up receiver improves sensor sensitivity while staying within the micro-power budget. This study's simulations showed that the developed RF energy harvesting algorithm outperformed previous work, achieving a 30% improvement in average charged energy (AEC), a 0.41% improvement in average energy (AEH), an 8.39% improvement in the number of energy transmitters, an 8.59% improvement in throughput, and a 0.19 decrease in outage probability compared to the existing network lifetime enhancement of multi-hop wireless sensor networks by RF Energy Harvesting algorithm. Overall, the enhanced power efficiency technique significantly improves the performance of WSNs

    Energy efficient scheduling and allocation of tasks in sensor cloud

    Get PDF
    Wireless Sensor Network (WSN) is a class of ad hoc networks that has capability of self-organizing, in-network data processing, and unattended environment monitoring. Sensor-cloud is a cloud of heterogeneous WSNs. It is attractive as it can change the computation paradigm of wireless sensor networks. In Sensor-Cloud, to gain profit from underutilized WSNs, multiple WSN owners collaborate to provide a cloud service. Sensor Cloud users can simply rent the sensing services which eliminates the cost of ownership, enabling the usage of large scale sensor networks become affordable. The nature of Sensor-Cloud enables resource sharing and allows virtual sensors to be scaled up or down. It abstracts different platforms hence giving the impression of a homogeneous network. Further in multi-application environment, users of different applications may require data based on different needs. Hence scheduling scheme in WSNs is required which serves maximum users of various applications. We have proposed a scheduling scheme suitable for the multiple applications in Sensor Cloud. Scheduling scheme is based on TDMA which considers fine granularity of tasks. The performance evaluation shows the better response time, throughput and overall energy consumption as compared to the base case we developed. On the other hand, to minimize the energy consumption in WSN, we design an allocation scheme. In Sensor Cloud, we consider sparsely and densely deployed WSNs working together. Also, in a WSN there might be sparsely and densely deployed zones. Based on spatial correlation and with the help of Voronoi diagram, we turn on minimum number of sensors hence increasing WSN lifetime and covering almost 100 percent area. The performance evaluation of allocation scheme shows energy efficiency by selecting fewer nodes in comparison to other work --Abstract, page iv
    • …
    corecore