16,033 research outputs found

    Energy Harvesting Networked Nodes: Measurements, Algorithms, and Prototyping

    Get PDF
    Recent advances in ultra-low-power wireless communications and in energy harvesting will soon enable energetically self-sustainable wireless devices. Networks of such devices will serve as building blocks for different Internet of Things (IoT) applications, such as searching for an object on a network of objects and continuous monitoring of object configurations. Yet, numerous challenges need to be addressed for the IoT vision to be fully realized. This thesis considers several challenges related to ultra-low-power energy harvesting networked nodes: energy source characterization, algorithm design, and node design and prototyping. Additionally, the thesis contributes to engineering education, specifically to project-based learning. We summarize our contributions to light and kinetic (motion) energy characterization for energy harvesting nodes. To characterize light energy, we conducted a first-of-its kind 16 month-long indoor light energy measurements campaign. To characterize energy of motion, we collected over 200 hours of human and object motion traces. We also analyzed traces previously collected in a study with over 40 participants. We summarize our insights, including light and motion energy budgets, variability, and influencing factors. These insights are useful for designing energy harvesting nodes and energy harvesting adaptive algorithms. We shared with the community our light energy traces, which can be used as energy inputs to system and algorithm simulators and emulators. We also discuss resource allocation problems we considered for energy harvesting nodes. Inspired by the needs of tracking and monitoring IoT applications, we formulated and studied resource allocation problems aimed at allocating the nodes' time-varying resources in a uniform way with respect to time. We mainly considered deterministic energy profile and stochastic environmental energy models, and focused on single node and link scenarios. We formulated optimization problems using utility maximization and lexicographic maximization frameworks, and introduced algorithms for solving the formulated problems. For several settings, we provided low-complexity solution algorithms. We also examined many simple policies. We demonstrated, analytically and via simulations, that in many settings simple policies perform well. We also summarize our design and prototyping efforts for a new class of ultra-low-power nodes - Energy Harvesting Active Networked Tags (EnHANTs). Future EnHANTs will be wireless nodes that can be attached to commonplace objects (books, furniture, clothing). We describe the EnHANTs prototypes and the EnHANTs testbed that we developed, in collaboration with other research groups, over the last 4 years in 6 integration phases. The prototypes harvest energy of the indoor light, communicate with each other via ultra-low-power transceivers, form small multihop networks, and adapt their communications and networking to their energy harvesting states. The EnHANTs testbed can expose the prototypes to light conditions based on real-world light energy traces. Using the testbed and our light energy traces, we evaluated some of our energy harvesting adaptive policies. Our insights into node design and performance evaluations may apply beyond EnHANTs to networks of various energy harvesting nodes. Finally, we present our contributions to engineering education. Over the last 4 years, we engaged high school, undergraduate, and M.S. students in more than 100 research projects within the EnHANTs project. We summarize our approaches to facilitating student learning, and discuss the results of evaluation surveys that demonstrate the effectiveness of our approaches

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Resource Allocation in Wireless Networks with RF Energy Harvesting and Transfer

    Full text link
    Radio frequency (RF) energy harvesting and transfer techniques have recently become alternative methods to power the next generation of wireless networks. As this emerging technology enables proactive replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service (QoS) requirement. This article focuses on the resource allocation issues in wireless networks with RF energy harvesting capability, referred to as RF energy harvesting networks (RF-EHNs). First, we present an overview of the RF-EHNs, followed by a review of a variety of issues regarding resource allocation. Then, we present a case study of designing in the receiver operation policy, which is of paramount importance in the RF-EHNs. We focus on QoS support and service differentiation, which have not been addressed by previous literatures. Furthermore, we outline some open research directions.Comment: To appear in IEEE Networ

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs
    • …
    corecore