286 research outputs found

    A Network of X-Band Meteorological Radars to Support the Motorway System (Campania Region Meteorological Radar Network Project)

    Get PDF
    he transport sector and road infrastructures are very sensitive to the issues connected to the atmospheric conditions. The latter constitute a source of relevant risk, especially for roads running in mountainous areas, where a wide spectrum of meteorological phenomena, such as rain showers, snow, hail, wind gusts and ice, threatens drivers’ safety. In such contexts, to face out critical situations it is essential to develop a monitoring system that is able to capillary surveil specific sectors or very small basins, providing real time information that may be crucial to preserve lives and assets. In this work, we present the results of the “Campania Region Meteorological Radar Network”, which is focused on the development of X-band radar-based meteorological products that can support highway traffic management and maintenance. The X-band measurements provided by two single-polarization systems, properly integrated with the observations supplied by disdrometers and conventional automatic weather stations, were involved in the following main tasks: (i) the development of a radar composite product; (ii) the devise of a probability of hail index; (iii) the real time discrimination of precipitation type (rain, mixed and snow); (iv) the development of a snowfall rate estimator. The performance of these products was assessed for two case studies, related to a relevant summer hailstorm (which occurred on 1 August 2020) and to a winter precipitation event (which occurred on 13 February 2021). In both cases, the X-band radar-based tools proved to be useful for the stakeholders involved in the management of highway traffic, providing a reliable characterization of precipitation events and of the fast-changing vertical structure of convective cells

    Quantifying uncertainty in radar rainfall estimates using an X-band dual polarisation weather radar

    Get PDF
    Weather radars have been used to quantitatively estimate precipitation since their development in the 1940s, yet these estimates are still prone to large uncertainties which dissuade the hydrological community in the UK from adopting these estimates as their primary rainfall data source. Recently dual polarisation radars have become more common, with the national networks in the USA, UK and across Europe being upgraded, and the benefits of dual polarisation radars are beginning to be realised for improving quantitative precipitation estimates (QPE). The National Centre for Atmospheric Science (NCAS) mobile Doppler X-band dual polarisation weather radar is the first radar of its kind in the UK, and since its acquisition in 2012 has been deployed on several field campaigns in both the UK and abroad. The first of these campaigns was the Convective Precipitation Experiment (COPE) where the radar was deployed in Cornwall (UK) through the summer of 2013. This thesis has used the data acquired during the COPE field campaign to develop a processing chain for the X-band radar which leverages its dual polarisation capabilities. The processing chain developed includes the removal of spurious echoes including second trip, ground clutter and insects through the use of dual polarisation texture fields, logical decision thresholds and fuzzy logic classification. The radar data is then corrected for the effects of attenuation and partial beam blockage (PBB) by using the differential phase shift to constrain the total path integrated attenuation and calibrate the radar azimuthally. A new smoothing technique has been developed to account for backscatter differential phase in the smoothing of differential phase shift which incorporates a long and a short averaging window in conjunction with weighting smoothing using the copolar correlation coefficient. During the correction process it is shown that the calculation of PBB is insensitive to the variation in the ratio between specific attenuation and specific differential phase shift provided a consistent value is used. It is also shown that the uncertainty in attenuation correction is lower when using a constrained correction such as the ZPHI approach rather than a direct linear correction using differential phase shift and is the preferred method of correction where possible. Finally the quality controlled, corrected radar moments are used to develop a rainfall estimation for the COPE field campaign. Results show that the quality control and correction process increases the agreement between radar rainfall estimates and rain gauges when using horizontal reflectivity from a regression correlation of -0.01 to 0.34, with a reduction in the mean absolute percentage difference (MAPD) from 86% to 31%. Using dual polarisation moments to directly estimate rainfall shows that rainfall estimates based on the theoretical conversion of specific attenuation to reflectivity produce the closest agreement to rain gauges for the field campaign with a MAPD of 24%. Finally it is demonstrated that merging multiple dual polarisation rainfall estimates together improves the performance of the rainfall estimates in high intensity rainfall events while maintaining the overall accuracy of the rainfall estimates when compared to rain gauges

    Effects of spatial resolution on radar-based precipitation estimation using sub-kilometer X-band radar measurements

    Get PDF
    Known for the ability to observe precipitation at spatial resolution higher than rain gauge networks and satellite products, weather radars allow us to measure precipitation at spatial resolutions of 1 kilometer (typical resolution for operational radars) and a few hundred meters (often used in research activities). In principle, we can operate a weather radar at resolution higher than 100m and the expectation is that radar data at higher spatial resolution can provide more information. However, there is no systematic research about whether the additional information is noise or useful data contributing to the quantitative precipitation estimation. In order to quantitatively investigate the changes, as either benefits or drawbacks, caused by increasing the spatial resolution of radar measurements, we set up an X-band radar field experiment from May to October in 2017 in the Stuttgart metropolitan region. The scan strategy consists of two quasi-simultaneous scans with a 75-m and a 250-m radial resolution respectively. They are named as the fine scan and the coarse scan, respectively. Both scans are compared to each other in terms of the radar data quality and their radar-based precipitation estimates. The primary results from these comparisons between the radar data of these two scans show that, in contrast to the coarse scan, the fine scan data are characterized with losses of weak echoes, are more subjected to external signals and second-trip echoes (drawback), are more effective in removing non-meteorological echoes (benefit), are more skillful in delineating convective storms (benefit), and show a better agreement with the external reference data (benefit)

    Atmospheric Instrument Systems and Technology in the Goddard Earth Sciences Division

    Get PDF
    Studies of the Earths atmosphere require a comprehensive set of observations that rely on instruments flown on spacecraft, aircraft, and balloons as well as those deployed on the surface. Within NASAs Goddard Space Flight Center (GSFC) Earth Sciences Division-Atmospheres, laboratories and offices maintain an active program of instrument system development and observational studies that provide: 1) information leading to a basic understanding of atmospheric processes and their relationships with the Earths climate system, 2) prototypes for future flight instruments, 3) instruments to serve as calibration references for satellite missions, and 4) instruments for future field validation campaigns that support ongoing space missions. Our scientists participate in all aspects of instrument activity, including component and system design, calibration techniques, retrieval algorithm development, and data processing systems. The Atmospheres Program has well-equipped labs and test equipment to support the development and testing of instrument systems, such as a radiometric calibration and development facility to support the calibration of ultraviolet and visible (UV/VIS), space-borne solar backscatter instruments. This document summarizes the features and characteristics of 46 instrument systems that currently exist or are under development. The report is organized according to active, passive, or in situ remote sensing across the electromagnetic spectrum. Most of the systems are considered operational in that they have demonstrated performance in the field and are capable of being deployed on relatively short notice. Other systems are under study or of low technical readiness level (TRL). The systems described herein are designed mainly for surface or airborne platforms. However, two Cubesat systems also have been developed through collaborative efforts. The Solar Disk Sextant (SDS) is the single balloon-borne instrument. The lidar systems described herein are designed to retrieve clouds, aerosols, methane, water vapor pressure, temperature, and winds. Most of the lasers operate at some wavelength combination of 355, 532, and 1064 nm. The various systems provide high sensitivity measurements based on returns from backscatter or Raman scattering including intensity and polarization. Measurements of the frequency (Doppler) shift of light scattered from various atmospheric constitutes can also be made. Microwave sensors consist of both active (radar) and passive (radiometer) systems. These systems are important for studying processes involving water in various forms. The dielectric properties of water affect microwave brightness temperatures, which are used to retrieve atmospheric parameters such as rainfall rate and other key elements of the hydrological cycle. Atmosphere radar systems operate in the range from 9.6 GHz to 94 GHz and have measurement accuracies from -5 to 1 dBZ; radiometers operate in the 50 GHz to 874 GHz range with accuracies from 0.5 to 1 degree K; conical and cross-track scan modes are used. Our passive optical sensors, consisting of radiometers and spectrometers, collectively operate from the UV into the infrared. These systems measure energy fluxes and atmospheric parameters such as trace gases, aerosols, cloud properties, or altitude profiles of various species. Imager spatial resolution varies from 37 m to 400 m depending on altitude; spectral resolution is as small as 0.5 nm. Many of the airborne systems have been developed to fly on multiple aircraft
    • …
    corecore