118 research outputs found

    Seamless Infrastructure independent Multi Homed NEMO Handoff Using Effective and Timely IEEE 802.21 MIH triggers

    Full text link
    Handoff performance of NEMO BS protocol with existent improvement proposals is still not sufficient for real time and QoS-sensitive applications and further optimizations are needed. When dealing with single homed NEMO, handoff latency and packet loss become irreducible all optimizations included, so that it is impossible to meet requirements of the above applications. Then, How to combine the different Fast handoff approaches remains an open research issue and needs more investigation. In this paper, we propose a new Infrastructure independent handoff approach combining multihoming and intelligent Make-Before-Break Handoff. Based on required Handoff time estimation, L2 and L3 handoffs are initiated using effective and timely MIH triggers, reducing so the anticipation time and increasing the probability of prediction. We extend MIH services to provide tunnel establishment and switching before link break. Thus, the handoff is performed in background with no latency and no packet loss while pingpong scenario is almost avoided. In addition, our proposal saves cost and power consumption by optimizing the time of simultaneous use of multiple interfaces. We provide also NS2 simulation experiments identifying suitable parameter values used for estimation and validating the proposed mode

    MOBILITY SUPPORT ARCHITECTURES FOR NEXT-GENERATION WIRELESS NETWORKS

    Get PDF
    With the convergence of the wireless networks and the Internet and the booming demand for multimedia applications, the next-generation (beyond the third generation, or B3G) wireless systems are expected to be all IP-based and provide real-time and non-real-time mobile services anywhere and anytime. Powerful and efficient mobility support is thus the key enabler to fulfil such an attractive vision by supporting various mobility scenarios. This thesis contributes to this interesting while challenging topic. After a literature review on mobility support architectures and protocols, the thesis starts presenting our contributions with a generic multi-layer mobility support framework, which provides a general approach to meet the challenges of handling comprehensive mobility issues. The cross-layer design methodology is introduced to coordinate the protocol layers for optimised system design. Particularly, a flexible and efficient cross-layer signalling scheme is proposed for interlayer interactions. The proposed generic framework is then narrowed down with several fundamental building blocks identified to be focused on as follows. As widely adopted, we assume that the IP-based access networks are organised into administrative domains, which are inter-connected through a global IP-based wired core network. For a mobile user who roams from one domain to another, macro (inter-domain) mobility management should be in place for global location tracking and effective handoff support for both real-time and non-real-lime applications. Mobile IP (MIP) and the Session Initiation Protocol (SIP) are being adopted as the two dominant standard-based macro-mobility architectures, each of which has mobility entities and messages in its own right. The work explores the joint optimisations and interactions of MIP and SIP when utilising the complementary power of both protocols. Two distinctive integrated MIP-SIP architectures are designed and evaluated, compared with their hybrid alternatives and other approaches. The overall analytical and simulation results shown significant performance improvements in terms of cost-efficiency, among other metrics. Subsequently, for the micro (intra-domain) mobility scenario where a mobile user moves across IP subnets within a domain, a micro mobility management architecture is needed to support fast handoffs and constrain signalling messaging loads incurred by intra-domain movements within the domain. The Hierarchical MIPv6 (HMIPv6) and the Fast Handovers for MIPv6 (FMIPv6) protocols are selected to fulfil the design requirements. The work proposes enhancements to these protocols and combines them in an optimised way. resulting in notably improved performances in contrast to a number of alternative approaches

    A cross-layer mobility management framework for next-generation wireless roaming

    Get PDF
    Word processed copy.Includes bibliographical references (leaves 62-64).This thesis proposes a mobility management framework that aims to provide a framework for advanced mobility algorithms that allows the challenges of next-generation roaming to be met. The framework features tools that gather context and content information, guarantee low-level QoS, provide security, and offer link and handoff management. The framework aims to be scalable and reliable for all-IP heterogeneous wireless networks whilst conforming to 4G service requirements

    IP-Based Mobility Management and Handover Latency Measurement in heterogeneous environments

    Get PDF
    One serious concern in the ubiquitous networks is the seamless vertical handover management between different wireless technologies. To meet this challenge, many standardization organizations proposed different protocols at different layers of the protocol stack. The Internet Engineering Task Force (IETF) has different groups working on mobility at IP level in order to enhance mobile IPv4 and mobile IPv6 with different variants: HMIPv6 (Hierarchical Mobile IPv6), FMIPv6 (Fast Mobile IPv6) and PMIPv6 (Proxy Mobile IPv6) for seamless handover. Moreover, the IEEE 802.21 standard provides another framework for seamless handover. The 3GPP standard provides the Access Network and Selection Function (ANDSF) to support seamless handover between 3GPP – non 3GPP networks like Wi-Fi, considered as untrusted, and WIMAX considered as trusted networks. In this paper, we present an in-depth analysis of seamless vertical handover protocols and a handover latency comparison of the main mobility management approaches in the literature. The comparison shows the advantages and drawbacks of every mechanism in order to facilitate the adoption of the convenient one for vertical handover within Next Generation Network (NGN) environments. Keywords: Seamless vertical handover, mobility management protocols, IEEE 802.21 MIH, handover latenc

    Rapidly IPv6 multimedia management schemes based LTE-A wireless networks

    Get PDF
    Ensuring the best quality of smart multimedia services becomes an essential goal for modern enterprises so there is always a need for effective IP mobility smart management schemes in order to fulfill the following two main functions: (I) interconnecting the moving terminals around the extended indoor smart services. In addition, (II) providing session continuity for instant data transfer in real-time and multimedia applications with negligible latency, efficient bandwidth utilization, and improved reliability. In this context, it found out that the Generalized Multi-Protocol Label Switching (GMPLS) over LTE-A network that offers many advanced services for large numbers of users with higher bandwidths, better spectrum efficiency, and lower latency. In GMPLS, there is an elimination of the routing searches and choice of routing protocols on every core LTE-A router also it provides the architecture simplicity and increases the scalability. A comparative assessment of three types of IPv6 mobility management schemes over the LTE-A provided by using various types of multimedia. By using OPNET Simulator 17.5, In accordance with these schemes, it was proven that the IPv6-GMPLS scheme is the best choice for the system's operation, in comparison to the IPv6-MPLS and Mobile IPv6 for all multimedia offerings and on the overall network performance

    Handover in Mobile WiMAX Networks: The State of Art and Research Issues

    Get PDF
    The next-generation Wireless Metropolitan Area Networks, using the Worldwide Interoperability for Microwave Access (WiMAX) as the core technology based on the IEEE 802.16 family of standards, is evolving as a Fourth-Generation (4G) technology. With the recent introduction of mobility management frameworks in the IEEE 802.16e standard, WiMAX is now placed in competition to the existing and forthcoming generations of wireless technologies for providing ubiquitous computing solutions. However, the success of a good mobility framework largely depends on the capability of performing fast and seamless handovers irrespective of the deployed architectural scenario. Now that the IEEE has defined the Mobile WiMAX (IEEE 802.16e) MAC-layer handover management framework, the Network Working Group (NWG) of the WiMAX Forum is working on the development of the upper layers. However, the path to commercialization of a full-fledged WiMAX mobility framework is full of research challenges. This article focuses on potential handover-related research issues in the existing and future WiMAX mobility framework. A survey of these issues in the MAC, Network and Cross-Layer scenarios is presented along with discussion of the different solutions to those challenges. A comparative study of the proposed solutions, coupled with some insights to the relevant issues, is also included

    Framework to facilitate smooth handovers between mobile IPv6 networks

    Get PDF
    Fourth generation (4G) mobile communication networks are characterised by heterogeneous access networks and IP based transport technologies. Different access technologies give users choices to select services such as levels of Quality of Service (QoS) support, business models and service providers. Flexibility of heterogeneous access is compounded by the overhead of scanning to discover accessible services, which added to the handoff latency. This thesis has developed mechanisms for service discovery and service selection, along with a novel proposal for mobility management architectures that reduced handoff latency. The service discovery framework included a service advertisement data repository and a single frequency band access mechanism, which enabled users to explore services offered by various operators with a reduced scanning overhead. The novel hierarchical layout of the repository enabled it to categorise information into various layers and facilitate location based information retrieval. The information made available by the repository included cost, bandwidth, Packet Loss (PL), latency, jitter, Bit Error Rate (BER), location and service connectivity information. The single frequency band access mechanism further enabled users to explore service advertisements in the absence of their main service providers. The single frequency access mechanism broadcasted service advertisements information piggybacked onto a router advertisement packet on a reserved frequency band for advertisements. Results indicated that scanning 13 channels on 802.11 b interface takes 189ms whereas executing a query with maximum permissible search parameters on the service advertisement data repository takes 67ms. A service selection algorithm was developed to make handoff decisions utilising the service advertisements acquired from the service discovery framework; based on a user's preference. The selection algorithm reduced the calculation overhead by eliminating unsuitable networks; based on interface compatibility, service provider location, unacceptable QoS (Quality of service) and unacceptable cost; from the selection process. The selection algorithm utilised cost, bandwidth, PL, latency, jitter, BER and terminal power for computing the most suitable network. Results indicated that the elimination based approach has improved the performance of the algorithm by 35% over non- elimination oriented selection procedures, even after utilising more selection parameters. The service discovery framework and the service selection algorithm are flexible enough to be employed in most mobility management architectures. The thesis recommends Seamless Mobile Internet Protocol (SMIP) as a mobility management scheme based on the simulation results. The SMIP protocol, a combination of Hierarchical Mobile Internet Protocol (HMIP) and Fast Mobile Internet Protocol (FMIP), suffered hand off latency increases when undergoing a global handoff due to HMIP. The proposed modification to the HMIP included the introduction of a coverage area overlap, to reduce the global handoff latency. The introduction of a Home Address (HA) in Wireless Local Area Networks (WLAN) binding table enabled seamless handoffs from WLANs by having a redirection mechanism for the user's packets after handoff. The thesis delivered a new mobility management architecture with mechanisms for service discovery and service selection. The proposed framework enabled user oriented, application centric and terminal based approach for selecting IPv6 networks

    Architecture d'interopérabilité et mécanismes de relÚve pour les réseaux sans fil de prochaine génération

    Get PDF
    Intégration, interopéribilité et mobilité -- An analytical framework for performance evaluation of IPV6-Based mobility management protocols -- An architecture for seamless mobility support in Ip-Based next generation wireless networks -- Adaptive handoff scheme for heterogeneous ip wireless networks -- Enhanced fast handoff scheme for heterogeneous wireless networks

    Mobility management across converged IP-based heterogeneous access networks

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 8/2/2010.In order to satisfy customer demand for a high performance “global” mobility service, network operators (ISPs, carriers, mobile operators, etc.) are facing the need to evolve to a converged “all-IP” centric heterogeneous access infrastructure. However, the integration of such heterogeneous access networks (e.g. 802.11, 802.16e, UMTS etc) brings major mobility issues. This thesis tackles issues plaguing existing mobility management solutions in converged IP-based heterogeneous networks. In order to do so, the thesis firstly proposes a cross-layer mechanism using the upcoming IEEE802.21 MIH services to make intelligent and optimized handovers. In this respect, FMIPv6 is integrated with the IEEE802.21 mechanism to provide seamless mobility during the overall handover process. The proposed solution is then applied in a simulated vehicular environment to optimize the NEMO handover process. It is shown through analysis and simulations of the signalling process that the overall expected handover (both L2 and L3) latency in FMIPv6 can be reduced by the proposed mechanism by 69%. Secondly, it is expected that the operator of a Next Generation Network will provide mobility as a service that will generate significant revenues. As a result, dynamic service bootstrapping and authorization mechanisms must be in place to efficiently deploy a mobility service (without static provisioning), which will allow only legitimate users to access the service. A GNU Linux based test-bed has been implemented to demonstrate this. The experiments presented show the handover performance of the secured FMIPv6 over the implemented test-bed compared to plain FMIPv6 and MIPv6 by providing quantitative measurements and results on the quality of experience perceived by the users of IPv6 multimedia applications. The results show the inclusion of the additional signalling of the proposed architecture for the purpose of authorization and bootstrapping (i.e. key distribution using HOKEY) has no adverse effect on the overall handover process. Also, using a formal security analysis tool, it is shown that the proposed mechanism is safe/secure from the induced security threats. Lastly, a novel IEEE802.21 assisted EAP based re-authentication scheme over a service authorization and bootstrapping framework is presented. AAA based authentication mechanisms like EAP incur signalling overheads due to large RTTs. As a result, overall handover latency also increases. Therefore, a fast re-authentication scheme is presented which utilizes IEEE802.21 MIH services to minimize the EAP authentication process delays and as a result reduce the overall handover latency. Analysis of the signalling process based on analytical results shows that the overall handover latency for mobility protocols will be approximately reduced by 70% by the proposed scheme
    • 

    corecore