225 research outputs found

    PERFORMANCE EVALUATION OF NON-LINEAR MIMO PRECODERS UNDER TRANSMIT IMPAIRMENTS

    Get PDF
    ABSTRACT This work analyzes the impact of radio frequency transmitter impairments on the performance of MultipleInput Multiple-Output (MIMO) systems with nonlinear Tomlinson-Harashima and vector precoding. This analysis is carried out by means of simulation results using two sorts of scenarios: spatially-white Rayleigh channels and measured indoor channels. We also show that incorporating the transmitter noise in the precoder design produces a significant performance improvement

    Distortion-Aware Linear Precoding for Massive MIMO Downlink Systems with Nonlinear Power Amplifiers

    Full text link
    We introduce a framework for linear precoder design over a massive multiple-input multiple-output downlink system in the presence of nonlinear power amplifiers (PAs). By studying the spatial characteristics of the distortion, we demonstrate that conventional linear precoding techniques steer nonlinear distortions towards the users. We show that, by taking into account PA nonlinearity, one can design linear precoders that reduce, and in single-user scenarios, even completely remove the distortion transmitted in the direction of the users. This, however, is achieved at the price of a reduced array gain. To address this issue, we present precoder optimization algorithms that simultaneously take into account the effects of array gain, distortion, multiuser interference, and receiver noise. Specifically, we derive an expression for the achievable sum rate and propose an iterative algorithm that attempts to find the precoding matrix which maximizes this expression. Moreover, using a model for PA power consumption, we propose an algorithm that attempts to find the precoding matrix that minimizes the consumed power for a given minimum achievable sum rate. Our numerical results demonstrate that the proposed distortion-aware precoding techniques provide significant improvements in spectral and energy efficiency compared to conventional linear precoders.Comment: 30 pages, 10 figure

    Linear Precoding with Low-Resolution DACs for Massive MU-MIMO-OFDM Downlink

    Full text link
    We consider the downlink of a massive multiuser (MU) multiple-input multiple-output (MIMO) system in which the base station (BS) is equipped with low-resolution digital-to-analog converters (DACs). In contrast to most existing results, we assume that the system operates over a frequency-selective wideband channel and uses orthogonal frequency division multiplexing (OFDM) to simplify equalization at the user equipments (UEs). Furthermore, we consider the practically relevant case of oversampling DACs. We theoretically analyze the uncoded bit error rate (BER) performance with linear precoders (e.g., zero forcing) and quadrature phase-shift keying using Bussgang's theorem. We also develop a lower bound on the information-theoretic sum-rate throughput achievable with Gaussian inputs, which can be evaluated in closed form for the case of 1-bit DACs. For the case of multi-bit DACs, we derive approximate, yet accurate, expressions for the distortion caused by low-precision DACs, which can be used to establish lower bounds on the corresponding sum-rate throughput. Our results demonstrate that, for a massive MU-MIMO-OFDM system with a 128-antenna BS serving 16 UEs, only 3--4 DAC bits are required to achieve an uncoded BER of 10^-4 with a negligible performance loss compared to the infinite-resolution case at the cost of additional out-of-band emissions. Furthermore, our results highlight the importance of taking into account the inherent spatial and temporal correlations caused by low-precision DACs

    Interference Exploitation-based Hybrid Precoding with Robustness Against Phase Errors

    Get PDF
    Hybrid analog-digital precoding significantly reduces the hardware costs in massive MIMO transceivers when compared to fully-digital precoding at the expense of increased transmit power. In order to mitigate the above shortfall, we use the concept of constructive interference-based precoding, which has been shown to offer significant transmit power savings when compared with the conventional interference suppression-based precoding in fully-digital multiuser MIMO systems. Moreover, in order to circumvent the potential quality-of-service degradation at the users due to the hardware impairments in the transmitters, we judiciously incorporate robustness against such vulnerabilities in the precoder design. Since the undertaken constructive interference-based robust hybrid precoding problem is nonconvex with infinite constraints and thus difficult to solve optimally, we decompose the problem into two subtasks, namely, analog precoding and digital precoding. In this paper, we propose an algorithm to compute the optimal constructive interference-based robust digital precoders. Furthermore, we devise a scheme to facilitate the implementation of the proposed algorithm in a low-complexity and distributed manner. We also discuss block-level analog precoding techniques. Simulation results demonstrate the superiority of the proposed algorithm and its implementation scheme over the state-of-the-art methods

    Performance of MIMO systems in measured indoor channels with transmitter noise

    Get PDF
    This study analyzes the impact of transmitter noise on the performance of multiple-input multiple-output (MIMO) systems with linear and nonlinear receivers and precoders. We show that the performance of MIMO linear and decision-feedback receivers is not significantly influenced by the presence of transmitter noise, which does not hold true in the case of MIMO systems with precoding. Nevertheless, we also show that this degradation can be greatly alleviated when the transmitter noise is considered in the MIMO precoder design. A MIMO testbed developed at the University of A Coruña has been employed for experimentally evaluating how much the transmitter noise impacts the system performance. Both the transmitter noise and the receiver noise covariance matrices have been estimated from a set of 260 indoor MIMO channel realizations. The impact of transmitter noise has been assessed in this realistic scenario.Galicia. Consellería de Economía e Industria; 10TIC003CTGalicia. Consellería de Economía e Industria; 09TIC008105PRMinisterio de Ciencia e Innovación; TEC2010-19545-C04-01Ministerio de Ciencia e Innovación; CSD2008-0001

    Towards the Assessment of Realistic Hybrid Precoding in Millimeter Wave MIMO Systems with Hardware Impairments

    Get PDF
    Funding Information: This work was supported by the University of Hertfordshire's 5‐year Vice Chancellor's Research Fellowship and by the National Research Fund, Luxembourg, under the projects ECLECTIC and 5G‐SKY. Publisher Copyright: © 2021 The Authors. IET Communications published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and TechnologyHybrid processing in millimeter wave (mmWave) communication has been proposed as a solution to reduce the cost and energy consumption by reducing the number of radio-frequency (RF) chains. However, the impact of the inevitable residual transceiver hardware impairments (RTHIs), including the residual additive transceiver hardware impairments (RATHIs) and the amplified thermal noise (ATN), has not been sufficiently studied in mmWave hybrid processing. In this work, the hybrid precoder and combiner are designed, which include both digital and analog processing by taking into account the RATHIs and the ATN. In particular, a thorough study is provided to shed light on the degradation of the spectral efficiency (SE) of the practical system. The outcomes show the steady degradation of the performance by the ATN across all SNR values, which becomes increasingly critical for higher values of its variance. Furthermore, it is shown that RATHIs result in degradation of the system only in the high SNR regime. Hence, their impact in mmWave system operating at low SNRs might be negligible. Moreover, an increase concerning the number of streams differentiates the impact between the transmit and receive RATHIs with the latter having a more severe effect.Peer reviewe

    Distributed Massive MIMO in Cellular Networks: Impact of Imperfect Hardware and Number of Oscillators

    Full text link
    Distributed massive multiple-input multiple-output (MIMO) combines the array gain of coherent MIMO processing with the proximity gains of distributed antenna setups. In this paper, we analyze how transceiver hardware impairments affect the downlink with maximum ratio transmission. We derive closed-form spectral efficiencies expressions and study their asymptotic behavior as the number of the antennas increases. We prove a scaling law on the hardware quality, which reveals that massive MIMO is resilient to additive distortions, while multiplicative phase noise is a limiting factor. It is also better to have separate oscillators at each antenna than one per BS.Comment: First published in the Proceedings of the 23rd European Signal Processing Conference (EUSIPCO-2015) in 2015, published by EURASIP. 5 pages, 3, figure
    corecore