26 research outputs found

    Impulse Radio Systems with Multiple Types of Ultra-Wideband Pulses

    Full text link
    Spectral properties and performance of multi-pulse impulse radio ultra-wideband systems with pulse-based polarity randomization are analyzed. Instead of a single type of pulse transmitted in each frame, multiple types of pulses are considered, which is shown to reduce the effects of multiple-access interference. First, the spectral properties of a multi-pulse impulse radio system is investigated. It is shown that the power spectral density is the average of spectral contents of different pulse shapes. Then, approximate closed-form expressions for bit error probability of a multi-pulse impulse radio system are derived for RAKE receivers in asynchronous multiuser environments. The theoretical and simulation results indicate that impulse radio systems that are more robust against multiple-access interference than a "classical" impulse radio system can be designed with multiple types of ultra-wideband pulses.Comment: To be presented at the 2005 Conference on Information Sciences and System

    Ultra Wideband Impulse Radio Systems with Multiple Pulse Types

    Full text link
    In an ultra wideband (UWB) impulse radio (IR) system, a number of pulses, each transmitted in an interval called a "frame", is employed to represent one information symbol. Conventionally, a single type of UWB pulse is used in all frames of all users. In this paper, IR systems with multiple types of UWB pulses are considered, where different types of pulses can be used in different frames by different users. Both stored-reference (SR) and transmitted-reference (TR) systems are considered. First, the spectral properties of a multi-pulse IR system with polarity randomization is investigated. It is shown that the average power spectral density is the average of the spectral contents of different pulse shapes. Then, approximate closed-form expressions for the bit error probability of a multi-pulse SR-IR system are derived for RAKE receivers in asynchronous multiuser environments. The effects of both inter-frame interference (IFI) and multiple-access interference (MAI) are analyzed. The theoretical and simulation results indicate that SR-IR systems that are more robust against IFI and MAI than a "conventional" SR-IR system can be designed with multiple types of ultra-wideband pulses. Finally, extensions to multi-pulse TR-IR systems are briefly described.Comment: To appear in the IEEE Journal on Selected Areas in Communications - Special Issue on Ultrawideband Wireless Communications: Theory and Application

    A Genetic Algorithm Based Finger Selection Scheme for UWB MMSE Rake Receivers

    Full text link
    Due to a large number of multipath components in a typical ultra wideband (UWB) system, selective Rake (SRake) receivers, which combine energy from a subset of multipath components, are commonly employed. In order to optimize system performance, an optimal selection of multipath components to be employed at fingers of an SRake receiver needs to be considered. In this paper, this finger selection problem is investigated for a minimum mean square error (MMSE) UWB SRake receiver. Since the optimal solution is NP hard, a genetic algorithm (GA) based iterative scheme is proposed, which can achieve near-optimal performance after a reasonable number of iterations. Simulation results are presented to compare the performance of the proposed finger selection algorithm with those of the conventional and optimal schemes.Comment: To appear in the Proc. IEEE International Conference on Ultrawideband (ICU-2005

    The Trade-off between Processing Gains of an Impulse Radio UWB System in the Presence of Timing Jitter

    Get PDF
    In time hopping impulse radio, NfN_f pulses of duration TcT_c are transmitted for each information symbol. This gives rise to two types of processing gain: (i) pulse combining gain, which is a factor NfN_f, and (ii) pulse spreading gain, which is Nc=Tf/TcN_c=T_f/T_c, where TfT_f is the mean interval between two subsequent pulses. This paper investigates the trade-off between these two types of processing gain in the presence of timing jitter. First, an additive white Gaussian noise (AWGN) channel is considered and approximate closed form expressions for bit error probability are derived for impulse radio systems with and without pulse-based polarity randomization. Both symbol-synchronous and chip-synchronous scenarios are considered. The effects of multiple-access interference and timing jitter on the selection of optimal system parameters are explained through theoretical analysis. Finally, a multipath scenario is considered and the trade-off between processing gains of a synchronous impulse radio system with pulse-based polarity randomization is analyzed. The effects of the timing jitter, multiple-access interference and inter-frame interference are investigated. Simulation studies support the theoretical results.Comment: To appear in the IEEE Transactions on Communication

    Optimal and Suboptimal Finger Selection Algorithms for MMSE Rake Receivers in Impulse Radio Ultra-Wideband Systems

    Get PDF
    Convex relaxations of the optimal finger selection algorithm are proposed for a minimum mean square error (MMSE) Rake receiver in an impulse radio ultra-wideband system. First, the optimal finger selection problem is formulated as an integer programming problem with a non-convex objective function. Then, the objective function is approximated by a convex function and the integer programming problem is solved by means of constraint relaxation techniques. The proposed algorithms are suboptimal due to the approximate objective function and the constraint relaxation steps. However, they can be used in conjunction with the conventional finger selection algorithm, which is suboptimal on its own since it ignores the correlation between multipath components, to obtain performances reasonably close to that of the optimal scheme that cannot be implemented in practice due to its complexity. The proposed algorithms leverage convexity of the optimization problem formulations, which is the watershed between `easy' and `difficult' optimization problems.Comment: To appear in IEEE Wireless Communications and Networking Conference (WCNC 2005), New Orleans, LA, March 13-17, 200

    Iterative ('Turbo') Multiuser Detectors For Impulse Radio Systems

    Get PDF
    In recent years, there has been a growing interest in multiple access communication systems that spread their transmitted energy over very large bandwidths. These systems, which are referred to as ultra wide-band (UWB) systems, have various advantages over narrow-band and conventional wide-band systems. The importance of multiuser detection for achieving high data or low bit error rates in these systems has already been established in several studies. This paper presents iterative ('turbo') multiuser detection for impulse radio (IR) UWB systems over multipath channels. While this approach is demonstrated for UWB signals, it can also be used in other systems that use similar types of signaling. When applied to the type of signals used by UWB systems, the complexity of the proposed detector can be quite low. Also, two very low complexity implementations of the iterative multiuser detection scheme are proposed based on Gaussian approximation and soft interference cancellation. The performance of these detectors is assessed using simulations that demonstrate their favorable properties.Comment: To appear in IEEE Transactions on Wireless Communication

    Optimal and Suboptimal Linear Receivers for Impulse Radio UWB Systems

    Get PDF
    The high time resolution of ultra-wideband (UWB) signals results in a large number of multipath components (MPCs) arriving at the receiver, which presents a source of diversity. In addition to this multipath diversity, there is also repetition diversity inherent in impulse radio (IR) UWB systems, since a number of pulses are transmitted for each information symbol. In order to make optimal use of both multipath and repetition diversity, the receiver needs to consider the optimal conbination of contributions from both different frames and different MPCs. In this overview paper, the optimal linear receiver for a given user in frequency-selective multiuser environment, which combines all the samples from the received signal according to the minimum mean square error (MMSE), criterion is studied. Due to the complexity of this optimal receiver, two suboptimal receivers with lower complexity are considered, optimal frame combining (OFC) and optimal multipath combining (OMC) receivers, which reduce computational complexity by suboptimal combining in the multipath diversity and repetition domains, respectively. Finally, a two-step MMSE algorithm which reduces complexity by performing MMSE combining in two steps is presented, and its optimality properties are discussed. Simulations are performed to compare the performance of different receivers

    Adaptation of two types of processing gains for UWB impulse radio wireless sensor networks

    Get PDF
    Ultrawideband impulse radio systems offer two kinds of processing gains that can be adapted based on the interference level in the system so that quality of service requirements are fulfilled. An adaptive assignment scheme for two types of multiple-access parameters in cluster-based wireless sensor networks is investigated. A mathematical framework is developed for asynchronous communications using a Gaussian approximation method to model the multiple-access interference in two cases: one with fixed frame duration, where the goal is to increase the average throughput, and the other with fixed symbol duration, where the goal is to increase the network lifetime. Extension of the analysis to multipath channels is carried out, and the validity of the Gaussian approximation is investigated using the Kullback-Leibler distance

    Performance Evaluation of RAKE Receiver for UWB Systems using Measured Channels in Industrial Environments

    Full text link
    The industrial environments are an important scenario for ultra wideband (UWB) communication systems. However, due to large number of metallic scatterers in the surroundings, the multipath offered by UWB channels is dense with significant energy. In this paper, the performance of RAKE receivers operating in a non line-of-sight (NLOS) scenario in these environments is evaluated. The channels used for the evaluation are measured in a medium-sized industrial environment. In addition, a standard IEEE 802.15.4a channel model is used for comparison with the results of the measured data. The performance of partial RAKE (PRake) and selective RAKE (SRake) is evaluated in terms of uncoded bit-error-rate (BER) using different number of fingers. The performance of maximal ratio combining (MRC) and equal gain combining (EGC) is compared for the RAKE receiver assuming perfect knowledge of the channel state. Finally, based on the simulation results, conclusions are drawn considering the performance and complexity issues for system design in these environments

    Interference mitigation and awareness for improved reliability

    Get PDF
    Wireless systems are commonly affected by interference from various sources. For example, a number of users that operate in the same wireless network can result in multiple-access interference (MAI). In addition, for ultrawideband (UWB) systems, which operate at very low power spectral densities, strong narrowband interference (NBI) can have significant effects on the communications reliability. Therefore, interference mitigation and awareness are crucial in order to realize reliable communications systems. In this chapter, pulse-based UWB systems are considered, and the mitigation of MAI is investigated first. Then, NBI avoidance and cancelation are studied for UWB systems. Finally, interference awareness is discussed for short-rate communications, next-generation wireless networks, and cognitive radios.Mitigation of multiple-access interference (MAI)In an impulse radio ultrawideband (IR-UWB) communications system, pulses with very short durations, commonly less than one nanosecond, are transmitted with a low-duty cycle, and information is carried by the positions or the polarities of pulses [1-5]. Each pulse resides in an interval called frame, and the positions of pulses within frames are determined according to time-hopping (TH) sequences specific to each user. The low-duty cycle structure together with TH sequences provide a multiple-access capability for IR-UWB systems [6].Although IR-UWB systems can theoretically accommodate a large number of users in a multiple-access environment [2, 4], advanced signal processing techniques are necessary in practice in order to mitigate the effects of interfering users on the detection of information symbols efficiently [6]. © Cambridge University Press 2011
    corecore