12,040 research outputs found

    An inexact Newton-Krylov algorithm for constrained diffeomorphic image registration

    Full text link
    We propose numerical algorithms for solving large deformation diffeomorphic image registration problems. We formulate the nonrigid image registration problem as a problem of optimal control. This leads to an infinite-dimensional partial differential equation (PDE) constrained optimization problem. The PDE constraint consists, in its simplest form, of a hyperbolic transport equation for the evolution of the image intensity. The control variable is the velocity field. Tikhonov regularization on the control ensures well-posedness. We consider standard smoothness regularization based on H1H^1- or H2H^2-seminorms. We augment this regularization scheme with a constraint on the divergence of the velocity field rendering the deformation incompressible and thus ensuring that the determinant of the deformation gradient is equal to one, up to the numerical error. We use a Fourier pseudospectral discretization in space and a Chebyshev pseudospectral discretization in time. We use a preconditioned, globalized, matrix-free, inexact Newton-Krylov method for numerical optimization. A parameter continuation is designed to estimate an optimal regularization parameter. Regularity is ensured by controlling the geometric properties of the deformation field. Overall, we arrive at a black-box solver. We study spectral properties of the Hessian, grid convergence, numerical accuracy, computational efficiency, and deformation regularity of our scheme. We compare the designed Newton-Krylov methods with a globalized preconditioned gradient descent. We study the influence of a varying number of unknowns in time. The reported results demonstrate excellent numerical accuracy, guaranteed local deformation regularity, and computational efficiency with an optional control on local mass conservation. The Newton-Krylov methods clearly outperform the Picard method if high accuracy of the inversion is required.Comment: 32 pages; 10 figures; 9 table

    Nodal Discontinuous Galerkin Methods on Graphics Processors

    Full text link
    Discontinuous Galerkin (DG) methods for the numerical solution of partial differential equations have enjoyed considerable success because they are both flexible and robust: They allow arbitrary unstructured geometries and easy control of accuracy without compromising simulation stability. Lately, another property of DG has been growing in importance: The majority of a DG operator is applied in an element-local way, with weak penalty-based element-to-element coupling. The resulting locality in memory access is one of the factors that enables DG to run on off-the-shelf, massively parallel graphics processors (GPUs). In addition, DG's high-order nature lets it require fewer data points per represented wavelength and hence fewer memory accesses, in exchange for higher arithmetic intensity. Both of these factors work significantly in favor of a GPU implementation of DG. Using a single US$400 Nvidia GTX 280 GPU, we accelerate a solver for Maxwell's equations on a general 3D unstructured grid by a factor of 40 to 60 relative to a serial computation on a current-generation CPU. In many cases, our algorithms exhibit full use of the device's available memory bandwidth. Example computations achieve and surpass 200 gigaflops/s of net application-level floating point work. In this article, we describe and derive the techniques used to reach this level of performance. In addition, we present comprehensive data on the accuracy and runtime behavior of the method.Comment: 33 pages, 12 figures, 4 table

    Multi-GPU maximum entropy image synthesis for radio astronomy

    Full text link
    The maximum entropy method (MEM) is a well known deconvolution technique in radio-interferometry. This method solves a non-linear optimization problem with an entropy regularization term. Other heuristics such as CLEAN are faster but highly user dependent. Nevertheless, MEM has the following advantages: it is unsupervised, it has a statistical basis, it has a better resolution and better image quality under certain conditions. This work presents a high performance GPU version of non-gridding MEM, which is tested using real and simulated data. We propose a single-GPU and a multi-GPU implementation for single and multi-spectral data, respectively. We also make use of the Peer-to-Peer and Unified Virtual Addressing features of newer GPUs which allows to exploit transparently and efficiently multiple GPUs. Several ALMA data sets are used to demonstrate the effectiveness in imaging and to evaluate GPU performance. The results show that a speedup from 1000 to 5000 times faster than a sequential version can be achieved, depending on data and image size. This allows to reconstruct the HD142527 CO(6-5) short baseline data set in 2.1 minutes, instead of 2.5 days that takes a sequential version on CPU.Comment: 11 pages, 13 figure

    High Performance Matrix-Fee Method for Large-Scale Finite Element Analysis on Graphics Processing Units

    Get PDF
    This thesis presents a high performance computing (HPC) algorithm on graphics processing units (GPU) for large-scale numerical simulations. In particular, the research focuses on the development of an efficient matrix-free conjugate gradient solver for the acceleration and scalability of the steady-state heat transfer finite element analysis (FEA) on a three-dimension uniform structured hexahedral mesh using a voxel-based technique. One of the greatest challenges in large-scale FEA is the availability of computer memory for solving the linear system of equations. Like in large-scale heat transfer simulations, where the size of the system matrix assembly becomes very large, the FEA solver requires huge amounts of computational time and memory that very often exceed the actual memory limits of the available hardware resources. To overcome this problem a matrix-free conjugate gradient (MFCG) method is designed and implemented to finite element computations which avoids the global matrix assembly. The main difference of the MFCG to the classical conjugate gradient (CG) solver lies on the implementation of the matrix-vector product operation. Matrix-vector operation found to be the most expensive process consuming more than 80% out of the total computations for the numerical solution and thus a matrix-free matrix-vector (MFMV) approach becomes beneficial for saving memory and computational time throughout the execution of the FEA. In summary, the MFMV algorithm consists of three nested loops: (a) a loop over the mesh elements of the domain, (b) a loop on the element nodal values to perform the element matrix-vector operations and (c) the summation and transformation of the nodal values into their correct positions in the global index. A performance analysis on a serial and a parallel implementation on a GPU shows that the MFCG solver outperforms the classical CG consuming significantly lower amounts of memory allowing for much larger size simulations. The outcome of this study suggests that the MFCG can also speed-up and scale the execution of large-scale finite element simulations
    • …
    corecore