66 research outputs found

    Eeg Classification For Epilepsy Based On Wavelet Packet Decomposition And Random Forest

    Get PDF
    EEG (electroencephalogram) can detect epileptic seizures by neurophysiologists in clinical practice with visually scan long recordings. Epilepsy seizure is a condition of brain disorder with chronic noncommunicable that affects people of all ages. The challenge of study is how to develop a method for signal processing that extract the subtle information of EEG and use it for automating the detection of epileptic with high accuration, so we can use it for monitoring and treatment the epileptic patient. In this study we developed a method to classify the EEG signal based on Wavelet Packet Decomposition that decompose the EEG signal and Random Forest for seizure detetion. The result of study shows that Random Forest classification has the best performance than KNN, ANN, and SVM. The best combination of statisctical features is standard deviation, maximum and minimum value, and bandpower. WPD is has best decomposition in 5th level

    Detection of Epileptic Seizures on EEG Signals Using ANFIS Classifier, Autoencoders and Fuzzy Entropies

    Get PDF
    Epileptic seizures are one of the most crucial neurological disorders, and their early diagnosis will help the clinicians to provide accurate treatment for the patients. The electroencephalogram (EEG) signals are widely used for epileptic seizures detection, which provides specialists with substantial information about the functioning of the brain. In this paper, a novel diagnostic procedure using fuzzy theory and deep learning techniques is introduced. The proposed method is evaluated on the Bonn University dataset with six classification combinations and also on the Freiburg dataset. The tunable- Q wavelet transform (TQWT) is employed to decompose the EEG signals into different sub-bands. In the feature extraction step, 13 different fuzzy entropies are calculated from different sub-bands of TQWT, and their computational complexities are calculated to help researchers choose the best set for various tasks. In the following, an autoencoder (AE) with six layers is employed for dimensionality reduction. Finally, the standard adaptive neuro-fuzzy inference system (ANFIS), and also its variants with grasshopper optimization algorithm (ANFIS-GOA), particle swarm optimization (ANFIS-PSO), and breeding swarm optimization (ANFIS-BS) methods are used for classification. Using our proposed method, ANFIS-BS method has obtained an accuracy of 99.7

    EEG CLASSIFICATION FOR EPILEPSY BASED ON WAVELET PACKET DECOMPOSITION AND RANDOM FOREST

    Get PDF
    EEG (electroencephalogram) can detect epileptic seizures by neurophysiologists in clinical practice with visually scan long recordings. Epilepsy seizure is a condition of brain disorder with chronic noncommunicable that affects people of all ages. The challenge of study is how to develop a method for signal processing that extract the subtle information of EEG and use it for automating the detection of epileptic with high accuration, so we can use it for monitoring and treatment the epileptic patient. In this study we developed a method to classify the EEG signal based on Wavelet Packet Decomposition that decompose the EEG signal and Random Forest for seizure detetion. The result of study shows that Random Forest classification has the best performance than KNN, ANN, and SVM. The best combination of statisctical features is standard deviation, maximum and minimum value, and bandpower. WPD is has best decomposition in 5th level

    An improved GBSO-TAENN-based EEG signal classification model for epileptic seizure detection.

    Get PDF
    Detection and classification of epileptic seizures from the EEG signals have gained significant attention in recent decades. Among other signals, EEG signals are extensively used by medical experts for diagnosing purposes. So, most of the existing research works developed automated mechanisms for designing an EEG-based epileptic seizure detection system. Machine learning techniques are highly used for reduced time consumption, high accuracy, and optimal performance. Still, it limits by the issues of high complexity in algorithm design, increased error value, and reduced detection efficacy. Thus, the proposed work intends to develop an automated epileptic seizure detection system with an improved performance rate. Here, the Finite Linear Haar wavelet-based Filtering (FLHF) technique is used to filter the input signals and the relevant set of features are extracted from the normalized output with the help of Fractal Dimension (FD) analysis. Then, the Grasshopper Bio-Inspired Swarm Optimization (GBSO) technique is employed to select the optimal features by computing the best fitness value and the Temporal Activation Expansive Neural Network (TAENN) mechanism is used for classifying the EEG signals to determine whether normal or seizure affected. Numerous intelligence algorithms, such as preprocessing, optimization, and classification, are used in the literature to identify epileptic seizures based on EEG signals. The primary issues facing the majority of optimization approaches are reduced convergence rates and higher computational complexity. Furthermore, the problems with machine learning approaches include a significant method complexity, intricate mathematical calculations, and a decreased training speed. Therefore, the goal of the proposed work is to put into practice efficient algorithms for the recognition and categorization of epileptic seizures based on EEG signals. The combined effect of the proposed FLHF, FD, GBSO, and TAENN models might dramatically improve disease detection accuracy while decreasing complexity of system along with time consumption as compared to the prior techniques. By using the proposed methodology, the overall average epileptic seizure detection performance is increased to 99.6% with f-measure of 99% and G-mean of 98.9% values

    Epileptic EEG Classification by Using Advanced Signal Decomposition Methods

    Get PDF
    Electroencephalography (EEG) signals are frequently used for the detection of epileptic seizures. In this chapter, advanced signal analysis methods such as Empirical Mode Decomposition (EMD), Ensembe (EMD), Dynamic mode decomposition (DMD), and Synchrosqueezing Transform (SST) are utilized to classify epileptic EEG signals. EMD and its derivative, EEMD are recently developed methods used to decompose nonstationary and nonlinear signals such as EEG into a finite number of oscillations called intrinsic mode functions (IMFs). In this study multichannel EEG signals collected from epilepsy patients are decomposed into IMFs, and then essential IMFs are selected. Finally, time- and spectral-domain, and nonlinear features are extracted from selected IMFs and classified. DMD is a new matrix decomposition method proposed as an iterative solution to problems in fluid flow analysis. We present single-channel, and multi-channel EEG based DMD approaches for the analysis of epileptic EEG signals. As a third method, we use the SST representations of seizure and pre-seizure EEG data. Various features are calculated and classified by Support Vector Machine (SVM), k-Nearest Neighbor (kNN), Naive Bayes (NB), Logistic Regression (LR), Boosted Trees (BT), and Subspace kNN (S-kNN) to detect pre-seizure and seizure signals. Simulation results demonstrate that the proposed approaches achieve outstanding validation accuracy rates

    Patient-independent epileptic seizure detection by stable feature selection

    Get PDF
    The detection of epileptic seizures in EEG signals is a challenging task because it requires careful review of multi-channel EEG recordings over a lengthy time interval. In general, EEG-based seizure detection is strongly dependent on the ability to select descriptive features that are also stable in the sense that they are not sensitive to changes in the training data. This study proposes and investigates a patient-independent seizure detection model that uses stable EEG-based features obtained by comparing multiple feature selection methods. The schemes considered can be divided into five categories, often referred to as similarity, information theoretic, sparse learning, statistical, and graph centrality feature selection methods. The stability of the features these schemes produce was evaluated by random forest classification, using the intersection, frequency, correlation, and similarity measures. In experiments with Temple University Hospital’s Seizure database of EEG records of 341 patients, unsupervised graph centrality feature selection was the most effective method, with a correct classification rate of 91.5%

    A Tunable-Q wavelet transform and quadruple symmetric pattern based EEG signal classification method

    Get PDF
    Electroencephalography (EEG) signals have been widely used to diagnose brain diseases for instance epilepsy, Parkinson's Disease (PD), Multiple Skleroz (MS), and many machine learning methods have been proposed to develop automated disease diagnosis methods using EEG signals. In this method, a multilevel machine learning method is presented to diagnose epilepsy disease. The proposed multilevel EEG classification method consists of pre-processing, feature extraction, feature concatenation, feature selection and classification phases. In order to create levels, Tunable-Q wavelet transform (TQWT) is chosen and 25 frequency coefficients sub-bands are calculated by using TQWT in the pre-processing. In the feature extraction phase, quadruple symmetric pattern (QSP) is chosen as feature extractor and extracts 256 features from the raw EEG signal and the extracted 25 sub-bands. In the feature selection phase, neighborhood component analysis (NCA) is used. The 128, 256, 512 and 1024 most significant features are selected in this phase. In the classification phase, k nearest neighbors (kNN) classifier is utilized as classifier. The proposed method is tested on seven cases using Bonn EEG dataset. The proposed method achieved 98.4% success rate for 5 classes case. Therefore, our proposed method can be used in bigger datasets for more validation
    corecore