21,724 research outputs found

    MOSDEN: A Scalable Mobile Collaborative Platform for Opportunistic Sensing Applications

    Get PDF
    Mobile smartphones along with embedded sensors have become an efficient enabler for various mobile applications including opportunistic sensing. The hi-tech advances in smartphones are opening up a world of possibilities. This paper proposes a mobile collaborative platform called MOSDEN that enables and supports opportunistic sensing at run time. MOSDEN captures and shares sensor data across multiple apps, smartphones and users. MOSDEN supports the emerging trend of separating sensors from application-specific processing, storing and sharing. MOSDEN promotes reuse and re-purposing of sensor data hence reducing the efforts in developing novel opportunistic sensing applications. MOSDEN has been implemented on Android-based smartphones and tablets. Experimental evaluations validate the scalability and energy efficiency of MOSDEN and its suitability towards real world applications. The results of evaluation and lessons learned are presented and discussed in this paper.Comment: Accepted to be published in Transactions on Collaborative Computing, 2014. arXiv admin note: substantial text overlap with arXiv:1310.405

    Computing server power modeling in a data center: survey,taxonomy and performance evaluation

    Full text link
    Data centers are large scale, energy-hungry infrastructure serving the increasing computational demands as the world is becoming more connected in smart cities. The emergence of advanced technologies such as cloud-based services, internet of things (IoT) and big data analytics has augmented the growth of global data centers, leading to high energy consumption. This upsurge in energy consumption of the data centers not only incurs the issue of surging high cost (operational and maintenance) but also has an adverse effect on the environment. Dynamic power management in a data center environment requires the cognizance of the correlation between the system and hardware level performance counters and the power consumption. Power consumption modeling exhibits this correlation and is crucial in designing energy-efficient optimization strategies based on resource utilization. Several works in power modeling are proposed and used in the literature. However, these power models have been evaluated using different benchmarking applications, power measurement techniques and error calculation formula on different machines. In this work, we present a taxonomy and evaluation of 24 software-based power models using a unified environment, benchmarking applications, power measurement technique and error formula, with the aim of achieving an objective comparison. We use different servers architectures to assess the impact of heterogeneity on the models' comparison. The performance analysis of these models is elaborated in the paper

    Hybridized Darts Game with Beluga Whale Optimization Strategy for Efficient Task Scheduling with Optimal Load Balancing in Cloud Computing

    Get PDF
    A cloud computing technology permits clients to use hardware and software technology virtually on a subscription basis. The task scheduling process is planned to effectively minimize implementation time and cost while simultaneously increasing resource utilization, and it is one of the most common problems in cloud computing systems. The Nondeterministic Polynomial (NP)-hard optimization problem occurs due to limitations like an insufficient make-span, excessive resource utilization, low implementation costs, and immediate response for scheduling. The task allocation is NP-hard because of the increase in the amount of combinations and computing resources. In this work, a hybrid heuristic optimization technique with load balancing is implemented for optimal task scheduling to increase the performance of service providers in the cloud infrastructure. Thus, the issues that occur in the scheduling process is greatly reduced. The load balancing problem is effectively solved with the help of the proposed task scheduling scheme. The allocation of tasks to the machines based on the workload is done with the help of the proposed Hybridized Darts Game-Based Beluga Whale Optimization Algorithm (HDG-BWOA). The objective functions like higher Cloud Data Center (CDC) resource consumption, increased task assurance ratio, minimized mean reaction time, and reduced energy utilization are considered while allocating the tasks to the virtual machines. This task scheduling approach ensures flexibility among virtual machines, preventing them from overloading or underloading. Also, using this technique, more tasks is efficiently completed within the deadline. The efficacy of the offered arrangement is ensured with the conventional heuristic-based task scheduling approaches in accordance with various evaluation measures
    • …
    corecore