3,868 research outputs found

    Computational and Energy Costs of Cryptographic Algorithms on Handheld Devices

    Get PDF
    Networks are evolving toward a ubiquitous model in which heterogeneous devices are interconnected. Cryptographic algorithms are required for developing security solutions that protect network activity. However, the computational and energy limitations of network devices jeopardize the actual implementation of such mechanisms. In this paper, we perform a wide analysis on the expenses of launching symmetric and asymmetric cryptographic algorithms, hash chain functions, elliptic curves cryptography and pairing based cryptography on personal agendas, and compare them with the costs of basic operating system functions. Results show that although cryptographic power costs are high and such operations shall be restricted in time, they are not the main limiting factor of the autonomy of a device

    The Meeting of Acquaintances: A Cost-efficient Authentication Scheme for Light-weight Objects with Transient Trust Level and Plurality Approach

    Full text link
    Wireless sensor networks consist of a large number of distributed sensor nodes so that potential risks are becoming more and more unpredictable. The new entrants pose the potential risks when they move into the secure zone. To build a door wall that provides safe and secured for the system, many recent research works applied the initial authentication process. However, the majority of the previous articles only focused on the Central Authority (CA) since this leads to an increase in the computation cost and energy consumption for the specific cases on the Internet of Things (IoT). Hence, in this article, we will lessen the importance of these third parties through proposing an enhanced authentication mechanism that includes key management and evaluation based on the past interactions to assist the objects joining a secured area without any nearby CA. We refer to a mobility dataset from CRAWDAD collected at the University Politehnica of Bucharest and rebuild into a new random dataset larger than the old one. The new one is an input for a simulated authenticating algorithm to observe the communication cost and resource usage of devices. Our proposal helps the authenticating flexible, being strict with unknown devices into the secured zone. The threshold of maximum friends can modify based on the optimization of the symmetric-key algorithm to diminish communication costs (our experimental results compare to previous schemes less than 2000 bits) and raise flexibility in resource-constrained environments.Comment: 27 page

    Preventing EFail Attacks with Client-Side WebAssembly: The Case of Swiss Post's IncaMail

    Full text link
    Traditional email encryption schemes are vulnerable to EFail attacks, which exploit the lack of message authentication by manipulating ciphertexts and exfiltrating plaintext via HTML backchannels. Swiss Post's IncaMail, a secure email service for transmitting legally binding, encrypted, and verifiable emails, counters EFail attacks using an authenticated-encryption with associated data (AEAD) encryption scheme to ensure message privacy and authentication between servers. IncaMail relies on a trusted infrastructure backend and encrypts messages per user policy. This paper presents a revised IncaMail architecture that offloads the majority of cryptographic operations to clients, offering benefits such as reduced computational load and energy footprint, relaxed trust assumptions, and per-message encryption key policies. Our proof-of-concept prototype and benchmarks demonstrate the robustness of the proposed scheme, with client-side WebAssembly-based cryptographic operations yielding significant performance improvements (up to ~14x) over conventional JavaScript implementations.Comment: This publication incorporates results from the VEDLIoT project, which received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 95719

    Benchmarking Block Ciphers for Wireless Sensor Networks

    Get PDF
    Choosing the most storage- and energy-efficient block cipher specifically for wireless sensor networks (WSNs) is not as straightforward as it seems. To our knowledge so far, there is no systematic evaluation framework for the purpose. We have identified the candidates of block ciphers suitable for WSNs based on existing literature. For evaluating and assessing these candidates, we have devised a systematic framework that not only considers the security properties but also the storage- and energy-efficency of the candidates. Finally, based on the evaluation results, we have selected the suitable ciphers for WSNs, namely Rijndael for high security and energy efficiency requirements; and MISTY1 for good storage and energy efficiency

    Portable TPM based user Attestation Architecture for Cloud Environments

    Get PDF
    Cloud computing is causing a major shift in the IT industry. Research indicates that the cloud computing industry segment is substantial and growing enormously. New technologies have been developed, and now there are various ways to virtualize IT systems and to access the needed applications on the Internet, through web based applications. Users, now can access their data any time and at any place with the service provided by the cloud storage. With all these benefits, security is always a concern. Even though the cloud provides accessing the data stored in cloud storage in a flexible and scalable manner, the main challenge it faces is with the security issues. Thus user may think it2019;s not secure since the encryption keys are managed by the software, therefore there is no attestation on the client software integrity. The cloud user who has to deploy in the reliable and secure environment should be confirmed from the Infrastructure as a Service (IaaS) that it has not been corrupted by the mischievous acts. Thus, the user identification which consists user ID and password can also be easily compromised. Apart from the traditional network security solutions, trusted computing technology is combined into more and more aspects of cloud computing environment to guarantee the integrity of platform and provide attestation mechanism for trustworthy services. Thus, enhancing the confidence of the IaaS provider. A cryptographic protocol adopted by the Trusted Computing Group enables the remote authentication which preserves the privacy of the user based on the trusted platform. Thus we propose a framework which defines Trusted Platform Module (TPM), a trusted computing group which proves the secure data access control in the cloud storage by providing additional security. In this paper, we define the TPMbased key management, remote client attestation and a secure key share protocol across multiple users. Then we consider some of the challenges with the current TPM based att
    • ā€¦
    corecore