1,349 research outputs found

    Raamistik mobiilsete asjade veebile

    Get PDF
    Internet on oma arengus lĂ€bi aastate jĂ”udnud jĂ€rgmisse evolutsioonietappi - asjade internetti (ingl Internet of Things, lĂŒh IoT). IoT ei tĂ€hista ĂŒhtainsat tehnoloogiat, see vĂ”imaldab eri seadmeil - arvutid, mobiiltelefonid, autod, kodumasinad, loomad, virtuaalsensorid, jne - omavahel ĂŒle Interneti suhelda, vajamata seejuures pidevat inimesepoolset seadistamist ja juhtimist. Mobiilseadmetest nagu nĂ€iteks nutitelefon ja tahvelarvuti on saanud meie igapĂ€evased kaaslased ning oma mitmekĂŒlgse vĂ”imekusega on nad motiveerinud teadustegevust mobiilse IoT vallas. Nutitelefonid kĂ€tkevad endas vĂ”imekaid protsessoreid ja 3G/4G tehnoloogiatel pĂ”hinevaid internetiĂŒhendusi. Kuid kui kasutada seadmeid jĂ€rjepanu tĂ€isvĂ”imekusel, tĂŒhjeneb mobiili aku kiirelt. Doktoritöö esitleb energiasÀÀstlikku, kergekaalulist mobiilsete veebiteenuste raamistikku anduriandmete kogumiseks, kasutades kergemaid, energiasÀÀstlikumaid suhtlustprotokolle, mis on IoT keskkonnale sobilikumad. Doktoritöö kĂ€sitleb pĂ”hjalikult energia kokkuhoidu mobiilteenuste majutamisel. Töö kĂ€igus loodud raamistikud on kontseptsiooni tĂ”estamiseks katsetatud mitmetes juhtumiuuringutes pĂ€ris seadmetega.The Internet has evolved, over the years, from just being the Internet to become the Internet of Things (IoT), the next step in its evolution. IoT is not a single technology and it enables about everything from computers, mobile phones, cars, appliances, animals, virtual sensors, etc. that connect and interact with each other over the Internet to function free from human interaction. Mobile devices like the Smartphone and tablet PC have now become essential to everyday life and with extended capabilities have motivated research related to the mobile Internet of Things. Although, the recently developed Smartphones enjoy the high performance and high speed 3G/4G mobile Internet data transmission services, such high speed performances quickly drain the battery power of the mobile device. This thesis presents an energy efficient lightweight mobile Web service provisioning framework for mobile sensing utilizing the protocols that were designed for the constrained IoT environment. Lightweight protocols provide an energy efficient way of communication. Finally, this thesis highlights the energy conservation of the mobile Web service provisioning, the developed framework, extensively. Several case studies with the use of the proposed framework were implemented on real devices and has been thoroughly tested as a proof-of-concept.https://www.ester.ee/record=b522498

    A Priority-based Fair Queuing (PFQ) Model for Wireless Healthcare System

    Get PDF
    Healthcare is a very active research area, primarily due to the increase in the elderly population that leads to increasing number of emergency situations that require urgent actions. In recent years some of wireless networked medical devices were equipped with different sensors to measure and report on vital signs of patient remotely. The most important sensors are Heart Beat Rate (ECG), Pressure and Glucose sensors. However, the strict requirements and real-time nature of medical applications dictate the extreme importance and need for appropriate Quality of Service (QoS), fast and accurate delivery of a patient’s measurements in reliable e-Health ecosystem. As the elderly age and older adult population is increasing (65 years and above) due to the advancement in medicine and medical care in the last two decades; high QoS and reliable e-health ecosystem has become a major challenge in Healthcare especially for patients who require continuous monitoring and attention. Nevertheless, predictions have indicated that elderly population will be approximately 2 billion in developing countries by 2050 where availability of medical staff shall be unable to cope with this growth and emergency cases that need immediate intervention. On the other side, limitations in communication networks capacity, congestions and the humongous increase of devices, applications and IOT using the available communication networks add extra layer of challenges on E-health ecosystem such as time constraints, quality of measurements and signals reaching healthcare centres. Hence this research has tackled the delay and jitter parameters in E-health M2M wireless communication and succeeded in reducing them in comparison to current available models. The novelty of this research has succeeded in developing a new Priority Queuing model ‘’Priority Based-Fair Queuing’’ (PFQ) where a new priority level and concept of ‘’Patient’s Health Record’’ (PHR) has been developed and integrated with the Priority Parameters (PP) values of each sensor to add a second level of priority. The results and data analysis performed on the PFQ model under different scenarios simulating real M2M E-health environment have revealed that the PFQ has outperformed the results obtained from simulating the widely used current models such as First in First Out (FIFO) and Weight Fair Queuing (WFQ). PFQ model has improved transmission of ECG sensor data by decreasing delay and jitter in emergency cases by 83.32% and 75.88% respectively in comparison to FIFO and 46.65% and 60.13% with respect to WFQ model. Similarly, in pressure sensor the improvements were 82.41% and 71.5% and 68.43% and 73.36% in comparison to FIFO and WFQ respectively. Data transmission were also improved in the Glucose sensor by 80.85% and 64.7% and 92.1% and 83.17% in comparison to FIFO and WFQ respectively. However, non-emergency cases data transmission using PFQ model was negatively impacted and scored higher rates than FIFO and WFQ since PFQ tends to give higher priority to emergency cases. Thus, a derivative from the PFQ model has been developed to create a new version namely “Priority Based-Fair Queuing-Tolerated Delay” (PFQ-TD) to balance the data transmission between emergency and non-emergency cases where tolerated delay in emergency cases has been considered. PFQ-TD has succeeded in balancing fairly this issue and reducing the total average delay and jitter of emergency and non-emergency cases in all sensors and keep them within the acceptable allowable standards. PFQ-TD has improved the overall average delay and jitter in emergency and non-emergency cases among all sensors by 41% and 84% respectively in comparison to PFQ model

    M-health review: joining up healthcare in a wireless world

    Get PDF
    In recent years, there has been a huge increase in the use of information and communication technologies (ICT) to deliver health and social care. This trend is bound to continue as providers (whether public or private) strive to deliver better care to more people under conditions of severe budgetary constraint

    Integration and characterisation of the performance of fifth-generation mobile technology (5g) connectivity over the University of Oulu 5g test network (5gtn) for cognitive edge node based on fractal edge platform

    Get PDF
    Abstract. In recent years, there has been a growing interest in cognitive edge nodes, which are intelligent devices that can collect and process data at the edge of the network. These nodes are becoming increasingly important for various applications such as smart cities, industrial automation, and healthcare. However, implementing cognitive edge nodes requires a reliable and efficient communication network. Therefore, this thesis assesses the performance of direct cellular (5G) and IEEE 802.11-based Wireless Local Area Network (WLAN) technology for three network architectures, which has the potential to offer low-latency, high-throughput and energy-efficient communication, for cognitive edge nodes. The study focused on evaluating the network performance metrics of throughput, latency, and power consumption for three different FRACTAL-based network architectures. These architectures include IEEE 802.11-based last mile, direct cellular (5G) backbone, and IEEE 802.11-based last mile over cellular (5G) backbone topologies. This research aims to provide insights into the performance of 5G technology for cognitive edge nodes. The findings suggest that the power consumption of IEEE 802.11-enabled nodes was only slightly higher than the reference case, indicating that it is more energy-efficient than 5G-enabled nodes. Additionally, in terms of latency, IEEE 802.11 technology may be more favourable. The throughput tests revealed that the cellular (5G) connection exhibited high throughput for communication between a test node and an upper-tier node situated either on the internet or at the network edge. In addition, it was found that the FRACTAL edge platform is flexible and scalable, and it supports different wireless technologies, making it a suitable platform for implementing cognitive edge nodes. Overall, this study provides insights into the potential of 5G technology and the FRACTAL edge platform for implementing cognitive edge nodes. The results of this research can be valuable for researchers and practitioners working in the field of wireless communication and edge computing, as it sheds light on the feasibility and performance of these technologies for implementing cognitive edge nodes in various applications

    Robotic assistants for universal access

    Get PDF
    Much research is now focusing on how technology is moving away from the traditional computer to a range of smart devices in smart environments, the so-called Internet of Things. With this increase in computing power and decrease in form factor, we are approaching the possibility of a new generation of robotic assistants able to perform a range of tasks and activities to support all kinds of users. However, history shows that unless care is taken early in the design process, the users who may stand to benefit the most from such assistance may inadvertently be excluded from it. This paper examines some of those historical missteps and examines possible ways forward to ensure that the next generation robots support the principles of universal access

    The UK Programmable Fixed and Mobile Internet Infrastructure:Overview, capabilities and use cases deployment

    Get PDF
    Leading state-of-the-art research facilities at the Universities of Edinburgh (UoE), Bristol (UoB), Lancaster (UoLan), King's College London (KCL) and Digital Catapult (DCAT) are interconnected through a dedicated JISC/JANET network infrastructure. Using Software Defined Networking (SDN) and Network Function Virtualisation (NFV) technologies, these distributed test-beds are integrated using a multi-domain NFV Orchestrator. This paper introduces a novel specialist distributed test-bed developed for facilitating the increasingly large and complex experimentation of future Internet system architectures, technologies, services and applications between the geographically dispersed laboratories across the UK. The aim is to enable students, researchers and enterprises to interconnect with and carry out remote experiments using these test-beds. Each one contributes a range of key capabilities for Internet research including optical networks, optical wireless and radio frequency communications, Internet of Things (IoT), SDN, NFV, as well as cloud computing technologies and services

    FedAdapt : adaptive offloading for IoT devices in federated learning

    Get PDF
    This work was sponsored by funds from Rakuten Mobile, Japan. The last author was also supported by a Royal Society Short Industry Fellowship.Applying Federated Learning (FL) on Internet-ofThings devices is necessitated by the large volumes of data they produce and growing concerns of data privacy. However, there are three challenges that need to be addressed to make FL efficient: (i) execution on devices with limited computational capabilities, (ii) accounting for stragglers due to computational heterogeneity of devices, and (iii) adaptation to the changing network bandwidths. This paper presents FedAdapt, an adaptive offloading FL framework to mitigate the aforementioned challenges. FedAdapt accelerates local training in computationally constrained devices by leveraging layer offloading of deep neural networks (DNNs) to servers. Further, FedAdapt adopts reinforcement learning based optimization and clustering to adaptively identify which layers of the DNN should be offloaded for each individual device on to a server to tackle the challenges of computational heterogeneity and changing network bandwidth. Experimental studies are carried out on a lab-based testbed and it is demonstrated that by offloading a DNN from the device to the server FedAdapt reduces the training time of a typical IoT device by over half compared to classic FL. The training time of extreme stragglers and the overall training time can be reduced by up to 57%. Furthermore, with changing network bandwidth, FedAdapt is demonstrated to reduce the training time by up to 40% when compared to classic FL, without sacrificing accuracy.PostprintPeer reviewe

    Personalized data analytics for internet-of-things-based health monitoring

    Get PDF
    The Internet-of-Things (IoT) has great potential to fundamentally alter the delivery of modern healthcare, enabling healthcare solutions outside the limits of conventional clinical settings. It can offer ubiquitous monitoring to at-risk population groups and allow diagnostic care, preventive care, and early intervention in everyday life. These services can have profound impacts on many aspects of health and well-being. However, this field is still at an infancy stage, and the use of IoT-based systems in real-world healthcare applications introduces new challenges. Healthcare applications necessitate satisfactory quality attributes such as reliability and accuracy due to their mission-critical nature, while at the same time, IoT-based systems mostly operate over constrained shared sensing, communication, and computing resources. There is a need to investigate this synergy between the IoT technologies and healthcare applications from a user-centered perspective. Such a study should examine the role and requirements of IoT-based systems in real-world health monitoring applications. Moreover, conventional computing architecture and data analytic approaches introduced for IoT systems are insufficient when used to target health and well-being purposes, as they are unable to overcome the limitations of IoT systems while fulfilling the needs of healthcare applications. This thesis aims to address these issues by proposing an intelligent use of data and computing resources in IoT-based systems, which can lead to a high-level performance and satisfy the stringent requirements. For this purpose, this thesis first delves into the state-of-the-art IoT-enabled healthcare systems proposed for in-home and in-hospital monitoring. The findings are analyzed and categorized into different domains from a user-centered perspective. The selection of home-based applications is focused on the monitoring of the elderly who require more remote care and support compared to other groups of people. In contrast, the hospital-based applications include the role of existing IoT in patient monitoring and hospital management systems. Then, the objectives and requirements of each domain are investigated and discussed. This thesis proposes personalized data analytic approaches to fulfill the requirements and meet the objectives of IoT-based healthcare systems. In this regard, a new computing architecture is introduced, using computing resources in different layers of IoT to provide a high level of availability and accuracy for healthcare services. This architecture allows the hierarchical partitioning of machine learning algorithms in these systems and enables an adaptive system behavior with respect to the user's condition. In addition, personalized data fusion and modeling techniques are presented, exploiting multivariate and longitudinal data in IoT systems to improve the quality attributes of healthcare applications. First, a real-time missing data resilient decision-making technique is proposed for health monitoring systems. The technique tailors various data resources in IoT systems to accurately estimate health decisions despite missing data in the monitoring. Second, a personalized model is presented, enabling variations and event detection in long-term monitoring systems. The model evaluates the sleep quality of users according to their own historical data. Finally, the performance of the computing architecture and the techniques are evaluated in this thesis using two case studies. The first case study consists of real-time arrhythmia detection in electrocardiography signals collected from patients suffering from cardiovascular diseases. The second case study is continuous maternal health monitoring during pregnancy and postpartum. It includes a real human subject trial carried out with twenty pregnant women for seven months
    • 

    corecore