219 research outputs found

    Link budget calculation in optical LEO satellite downlinks with on/off-keying and large signal divergence: A simplified methodology

    Get PDF
    Direct-to-Earth transmissions with Optical On/Off-Keying are becoming the method of choice to realize telemetry downlinks from low Earth orbit satellites at highest data-rates. Here, we review the calculation procedure for a practical assessment of the mean link budget in this space-ground data communication technology. We present a comprehensive survey of the dynamic orbital and beam-pointing effects as well as the impacts from atmospheric attenuation on the link performance. The paper provides an exhaustive review of the formulas commonly used, and propounds a recipe to reliably estimate the received power on ground. An overview of typical data transmitter terminals, transmission channel parameters, and the according optical ground stations is provided. Comparison with measured received powers over transmitter elevation angle, and the respective design estimates serves for verification

    Current optical technologies for wireless access

    Get PDF
    The objective of this paper is to describe recent activities and investigations on free-space optics (FSO) or optical wireless and the excellent results achieved within SatNEx an EU-framework 6th programme and IC 0802 a COST action. In a first part, the FSO technology is briefly discussed. In a second part, we mention some performance evaluation criterions for the FSO. In third part, we briefly discuss some optical signal propagation experiments through the atmosphere by mentioning network architectures for FSO and then discuss the recent investigations in airborne and satellite application experiments for FSO. In part four, we mention some recent investigation results on modelling the FSO channel under fog conditions and atmospheric turbulence. Additionally, some recent major performance improvement results obtained by employing hybrid systems and using some specific modulation and coding schemes are presented

    Comparison of direct and heterodyne detection optical intersatellite communication links

    Get PDF
    The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity

    Computer based simulation of optical wireless communications for the development of optimized error protection and correction schemes

    Get PDF
    Commercial application of optical wireless communications is currently limited to the area of short range near ground connections, like networks between buildings over a few kilometers. For other areas of application, like data downlinks from flying platforms, demonstrations have been done, but commercial systems for long range communications over many kilometers are not yet available for general usage. The biggest challenge for reliable optical communications is to mitigate the fading of the received optical signal. A possible solution is to implement error protection and correction mechanisms for securing transmitted data. In this dissertation a simplified channel model is developed which can be used for computer based simulation. This simplified channel model is then used for the evaluation of error protection and correction mechanisms applied to the optical wireless channel. Finally generally proposed communication scenarios are evaluated if optical wireless communication is possible, based on the developed channel model. The results show that the combination of forward error correction and selective repeat automatic repeat request protocols can be used to realize reliable optical communication links in all proposed scenarios, even the most challenging ones. The back channel traffic for automatic repeat request protocols leads to a significant reduction of the transmittable user data rate in worst-case scenarios and has to be taken into account for the system design. The developed simulation approach can be used to optimize protocols for the optical wireless channel in order to reduce the load on the back channel and the over all required memory.Die kommerzielle Anwendung der optischen Freiraumkommunikation ist gegenwärtig auf den Bereich der bodennahen Kurzstreckenverbindungen mit wenigen Kilometern Länge begrenzt, beispielsweise Netzwerkverbindung zwischen Gebäuden. In anderen Anwendungsbereichen, z.B. Datendownlinks von fliegenden Plattformen, wurden zwar Technologiedemonstrationen durchgeführt, jedoch sind für solche Langstreckenverbindungen keine alltagstauglichen kommerziellen Systeme verfügbar. Die größte Herausforderung für zuverlässige optische Kommunikation ist die Kompensation der Signalschwankungen des empfangenen optischen Signals. Eine mögliche Lösung für dieses Problem ist die Implementierung von Fehlersicherungs- und Fehlerkorrekturmechanismen, um die Datenübertragung abzusichern. In dieser Dissertation wird ein vereinfachtes Kanalmodell entwickelt, welches für die Simulationen mittels Computern geeignet ist. Dieses vereinfachte Modell wird anschließend für die Bewertung von Fehlersicherungs- und Fehlerkorrekturmechanismen für den optischen Kanal verwendet. Abschliessend wird basierend auf dem entwickelten Kanalmodell der mögliche Einsatz von optischer Freiraumkommunikation in häufig vorgeschlagenen Szenarien untersucht. Die Ergebnisse zeigen, dass die Kombination von Vorwärtsfehlerkorrektur und Protokollen mit selektiver Wiederholung und automatischer Wiederholungsanfrage geeignet ist, um zuverlässige optische Kommunikationsverbindungen in allen vorgeschlagenen Szenarien zu realisieren, selbst in den anspruchsvollsten. Die Datenübertragung auf dem Rückkanal von Protokollen mit automatischer Wiederholungsanfrage führt im schlechtesten Fall zu einer signifikanten Reduzierung der übertragbaren Nutzdatenrate und muss bei der Systemauslegung berücksichtigt werden. Mit dem entwickelten Simulationsansatz können Protokolle für den optischen Funkkanal optimiert werden, um die Belastung des Rückkanals zu reduzieren und um den allgemeinen Speicherbedarf zu reduzieren

    Advanced adaptive compensation system for free-space optical communications

    Get PDF
    Massive amounts of information are created daily in commercial fields like earth observation, that must be downloaded to earth ground stations in the short time of a satellite pass. Today, much of the collected information must be dropped due to lack of bandwidth, and laser downlinks can offer tenths of gigabits throughput solving this bottleneck limitation. In a down-link scenario, the performance of laser satellite communications is limited due to atmospheric turbulence, which causes fluctuations in the intensity and the phase of the received signal leading to an increase in bit error probability. In principle, a single-aperture phase-compensated receiver, based on adaptive optics, can overcome atmospheric limitations by adaptive tracking and correction of atmospherically induced aberrations. However, under strong-turbulence situations, the effectiveness of traditional adaptive optics systems is severely compromised. In such scenarios, sensor-less techniques offer robustness, hardware simplicity, and easiness of implementation and integration at a reduced cost, but the state-of-the-art approaches still require too many iterations to perform the correction, exceeding the temporal coherence of the field and thus falling behind the field evolution. This thesis proposes a new iterative AO technique for strong turbulence compensation that reduces the correction time, bridging the limitation of similar systems in lasercom applications. It is based on the standard sensor-less system design, but it additionally uses a short-exposure focal intensity image to accelerate the correction. The technique combines basic principles of Fourier optics, image processing, and quadratic signal optimization to correct the wave-front. This novel approach directly updates the phases of the most intense focal-plane speckles, maximizing the power coupled into a single-mode fiber convexly. Numerical analyses show that this method has a robust and excellent performance under very strong turbulence. Laboratory results confirm that a focal speckle pattern can be used to accelerate the iterative compensation. This technique delivers nearly twofold bandwidth reduction compared with standard methods, and sufficient signal gain and stability to allow high throughput data transmission with nearly error-free performance in emulated satellite downlink scenarios. A property highlight is the in-advance knowledge of the required number of iterations, allowing on-demand management of the loop bandwidth in different turbulent regimes. Besides remaining conceptually and technically simple, it opens a new insight to iterative solutions that may lead to the development of new methods. With further refinement, this technique can surely contribute to making possible the use of iterative solutions in laser communicationsSatélites de observación de la tierra diariamente generan gigantescas cantidades de datos que deben ser enviados a estaciones terrenas. La mayoría de la información recolectada debe desecharse debido al reducido tiempo visible de un satélite en movimiento y el limitado ancho de banda de transmisión. Enlaces ópticos pueden solucionar esta limitación ofreciendo multi-gigabit de ancho de banda. Sin embargo, el desempeño de un downlink laser está limitado por la turbulencia atmosférica, la cual induce variaciones en la intensidad y la fase de la señal recibida incrementando la probabilidad de error en los datos recibidos. En principio, un receptor basado en una apertura simple utilizando óptica adaptativa puede corregir las aberraciones de fase inducidas por la atmósfera, mejorando el canal de transmisión. Sin embargo, la eficiencia de los sistemas de óptica adaptativa tradicionales se ve seriamente reducida en situaciones de turbulencia fuerte. En tales escenarios, técnicas iterativas ofrecen mayor robustez, simplicidad de diseño e implementación, así como también facilidad de integración a un costo reducido. Desafortunadamente, dicha tecnología aún requiere demasiadas iteraciones para corregir la fase distorsionada, excediendo el tiempo de coherencia del frente de onda. Esta tesis propone una nueva técnica iterativa de óptica adaptativa capaz de reducir el tiempo de convergencia en escenarios de turbulencia fuerte. La técnica utiliza el diseño tradicional de los sistemas de corrección iterativos, agregando el uso de una imagen focal de intensidad para acelerar el proceso de corrección del campo distorsionado. En dicha técnica se combinan principios básicos de óptica de Fourier, procesamiento de imagen, y optimización cuadrática de la señal para corregir el frente de onda. De esta forma, la fase de los puntos focales de mayor intensidad (speckles) puede modificarse directamente y con ello maximizar de forma convexa la potencia acoplada en fibra. Los análisis numéricos demuestran robustez y un excelente desempeño en escenarios de turbulencia fuerte. Los resultados de laboratorio confirman que el moteado de intensidad puede utilizarse para acelerar la corrección iterativa. Esta técnica utiliza la mitad del ancho de banda requerido con la técnica tradicional, al mismo tiempo que ofrece suficiente ganancia y estabilidad de la señal para lograr enlaces ópticos con muy baja probabilidad de error. Al mismo tiempo, la técnica propuesta permite conocer con anticipación el número total de iteraciones y posibilita la administración bajo demanda del ancho de banda requerido en diferentes escenarios de turbulencia. Esta tesis ofrece una mirada diferente a los métodos iterativos, posibilitando el desarrollo de nuevos conceptos y contribuyendo al uso de soluciones iterativas en comunicaciones laser por espacio libre.Postprint (published version

    Introduction to free space optical (FSO) communications

    Get PDF
    The demand for high bandwidth and secure communication is increasing. Free space optical (FSO) wireless communications technology could be one possible alternative option to the RF technologies that can be adopted in certain applications to unlock the bandwidth bottleneck issue, specifically in the last mile access networks, between mobile base stations in RF cellular wireless networks, and for radio over fiber; and over the last decade, we have seen growing research and development activities in FSO communications in the field of high data rate wireless technology applications as well as the emergence of commercial systems
    corecore