8,712 research outputs found

    STiCMAC: A MAC Protocol for Robust Space-Time Coding in Cooperative Wireless LANs

    Full text link
    Relay-assisted cooperative wireless communication has been shown to have significant performance gains over the legacy direct transmission scheme. Compared with single relay based cooperation schemes, utilizing multiple relays further improves the reliability and rate of transmissions. Distributed space-time coding (DSTC), as one of the schemes to utilize multiple relays, requires tight coordination between relays and does not perform well in a distributed environment with mobility. In this paper, a cooperative medium access control (MAC) layer protocol, called \emph{STiCMAC}, is designed to allow multiple relays to transmit at the same time in an IEEE 802.11 network. The transmission is based on a novel DSTC scheme called \emph{randomized distributed space-time coding} (\emph{R-DSTC}), which requires minimum coordination. Unlike conventional cooperation schemes that pick nodes with good links, \emph{STiCMAC} picks a \emph{transmission mode} that could most improve the end-to-end data rate. Any station that correctly receives from the source can act as a relay and participate in forwarding. The MAC protocol is implemented in a fully decentralized manner and is able to opportunistically recruit relays on the fly, thus making it \emph{robust} to channel variations and user mobility. Simulation results show that the network capacity and delay performance are greatly improved, especially in a mobile environment.Comment: This paper is a revised version of a paper with the same name submitted to IEEE Transaction on Wireless Communications. STiCMAC protocol with RTS/CTS turned off is presented in the appendix of this draf

    Flow Allocation for Maximum Throughput and Bounded Delay on Multiple Disjoint Paths for Random Access Wireless Multihop Networks

    Full text link
    In this paper, we consider random access, wireless, multi-hop networks, with multi-packet reception capabilities, where multiple flows are forwarded to the gateways through node disjoint paths. We explore the issue of allocating flow on multiple paths, exhibiting both intra- and inter-path interference, in order to maximize average aggregate flow throughput (AAT) and also provide bounded packet delay. A distributed flow allocation scheme is proposed where allocation of flow on paths is formulated as an optimization problem. Through an illustrative topology it is shown that the corresponding problem is non-convex. Furthermore, a simple, but accurate model is employed for the average aggregate throughput achieved by all flows, that captures both intra- and inter-path interference through the SINR model. The proposed scheme is evaluated through Ns2 simulations of several random wireless scenarios. Simulation results reveal that, the model employed, accurately captures the AAT observed in the simulated scenarios, even when the assumption of saturated queues is removed. Simulation results also show that the proposed scheme achieves significantly higher AAT, for the vast majority of the wireless scenarios explored, than the following flow allocation schemes: one that assigns flows on paths on a round-robin fashion, one that optimally utilizes the best path only, and another one that assigns the maximum possible flow on each path. Finally, a variant of the proposed scheme is explored, where interference for each link is approximated by considering its dominant interfering nodes only.Comment: IEEE Transactions on Vehicular Technolog

    Opportunistic Interference Mitigation Achieves Optimal Degrees-of-Freedom in Wireless Multi-cell Uplink Networks

    Full text link
    We introduce an opportunistic interference mitigation (OIM) protocol, where a user scheduling strategy is utilized in KK-cell uplink networks with time-invariant channel coefficients and base stations (BSs) having MM antennas. Each BS opportunistically selects a set of users who generate the minimum interference to the other BSs. Two OIM protocols are shown according to the number SS of simultaneously transmitting users per cell: opportunistic interference nulling (OIN) and opportunistic interference alignment (OIA). Then, their performance is analyzed in terms of degrees-of-freedom (DoFs). As our main result, it is shown that KMKM DoFs are achievable under the OIN protocol with MM selected users per cell, if the total number NN of users in a cell scales at least as SNR(K−1)M\text{SNR}^{(K-1)M}. Similarly, it turns out that the OIA scheme with SS(<M<M) selected users achieves KSKS DoFs, if NN scales faster than SNR(K−1)S\text{SNR}^{(K-1)S}. These results indicate that there exists a trade-off between the achievable DoFs and the minimum required NN. By deriving the corresponding upper bound on the DoFs, it is shown that the OIN scheme is DoF optimal. Finally, numerical evaluation, a two-step scheduling method, and the extension to multi-carrier scenarios are shown.Comment: 18 pages, 3 figures, Submitted to IEEE Transactions on Communication

    SDDV: scalable data dissemination in vehicular ad hoc networks

    Get PDF
    An important challenge in the domain of vehicular ad hoc networks (VANET) is the scalability of data dissemination. Under dense traffic conditions, the large number of communicating vehicles can easily result in a congested wireless channel. In that situation, delays and packet losses increase to a level where the VANET cannot be applied for road safety applications anymore. This paper introduces scalable data dissemination in vehicular ad hoc networks (SDDV), a holistic solution to this problem. It is composed of several techniques spread across the different layers of the protocol stack. Simulation results are presented that illustrate the severity of the scalability problem when applying common state-of-the-art techniques and parameters. Starting from such a baseline solution, optimization techniques are gradually added to SDDV until the scalability problem is entirely solved. Besides the performance evaluation based on simulations, the paper ends with an evaluation of the final SDDV configuration on real hardware. Experiments including 110 nodes are performed on the iMinds w-iLab.t wireless lab. The results of these experiments confirm the results obtained in the corresponding simulations

    Autonomous Algorithms for Centralized and Distributed Interference Coordination: A Virtual Layer Based Approach

    Get PDF
    Interference mitigation techniques are essential for improving the performance of interference limited wireless networks. In this paper, we introduce novel interference mitigation schemes for wireless cellular networks with space division multiple access (SDMA). The schemes are based on a virtual layer that captures and simplifies the complicated interference situation in the network and that is used for power control. We show how optimization in this virtual layer generates gradually adapting power control settings that lead to autonomous interference minimization. Thereby, the granularity of control ranges from controlling frequency sub-band power via controlling the power on a per-beam basis, to a granularity of only enforcing average power constraints per beam. In conjunction with suitable short-term scheduling, our algorithms gradually steer the network towards a higher utility. We use extensive system-level simulations to compare three distributed algorithms and evaluate their applicability for different user mobility assumptions. In particular, it turns out that larger gains can be achieved by imposing average power constraints and allowing opportunistic scheduling instantaneously, rather than controlling the power in a strict way. Furthermore, we introduce a centralized algorithm, which directly solves the underlying optimization and shows fast convergence, as a performance benchmark for the distributed solutions. Moreover, we investigate the deviation from global optimality by comparing to a branch-and-bound-based solution.Comment: revised versio
    • …
    corecore