72 research outputs found

    ACO based AODV Method for Detection and Recovery of Misbehaving Nodes

    Get PDF
    Mobile ad-hoc networks (MANETs) can be described as a set of a huge variety of mobile nodes. MANET has the kind of applications such navy, disaster stuck regions and the characteristics of dynamic topology, no constant infrastructure, and many others. Nevertheless, there are a few protection issues and challenges in it. MANET is vulnerable to numerous attacks because of its open medium. As a result, there's need to examine in detail about the way to discover malicious or misbehaving node present inside the network. Ant algorithm is a set of rules this is most appropriate to be carried out in MANET environments than other algorithms. It can discover a most effective route, independent, decentralized, rapid adaptation, and multiple routes. Due to this motive, we use ant algorithm to enhance the overall performance of the proposed comfortable protocol. in this paper, Ant-primarily based Misbehavior node detection approach is carried out with ad-hoc On-demand Distance Vector (AODV) protocols and it figuring out the misbehavior node properly evaluate the parameters of packet delivery ratio, throughput and so on

    Investigating Open Issues in Swarm Intelligence for Mitigating Security Threats in MANET

    Get PDF
    The area of Mobile Adhoc Network (MANET) has being a demanded topic of research for more than a decade because of its attractive communication features associated with various issues. This paper primarily discusses on the security issues, which has been still unsolved after abundant research work. The paper basically stresses on the potential features of Swarm Intelligence (SI) and its associated techniques to mitigate the security issues. Majority of the previous researches based on SI has used Ant Colony Optimization (ACO) or Particle Swarm Optimization (PSO) extensively. Elaborated discussion on SI with respect to trust management, authentication, and attack models are made with support of some of the recent studies done in same area. The paper finally concludes by discussing the open issues and problem identification of the review

    Swarm Intelligence-Based Bio-Inspired Framework for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are gaining immense popularity as a result of their wide potential applications in industry, military, and academia such as military surveillance, agricultural monitoring, industrial automation, and smart homes. Currently, WSN has garnered tremendous significance as it is has become the core component of the Internet of Things (IOT) area. Modern-day applications need a high level of security and quick response mechanism to deal with the emerging data trends where the response is measured in terms of latency, throughput, and scalability. Further, critical security issues need to be considered due to various types of threats and attacks WSNs are exposed to as they are deployed in harsh and hostile environments unattended in most of the mission critical applications. The fact that a complex sensor network consisting of simple computing units has similarities with specific animal communities, whose members are often very simple but produce together more sophisticated and capable entities. Thus, from an algorithmic viewpoint, bio-inspired framework such as swarm intelligence technology may provide valuable alternative to solve the large scale optimization problems that occur in wireless sensor networks. Self-organization, on the other hand, can be useful for distributed control and management tasks. In this chapter, swarm intelligence and social insects-based approaches developed to deal with a bio-inspired networking framework are presented. The proposed approaches are designed to tackle the challenges and issues in the WSN field such as large scale networking, dynamic nature, resource constraints, and the need for infrastructure-less and autonomous operation having the capabilities of self-organization and survivability. This chapter covers three phases of the research work carried out toward building a framework. First phase involves development of SIBER-XLP model, Swarm Intelligence Based Efficient Routing protocol for WSN with Improved Pheromone Update Model, and Optimal Forwarder Selection Function which chooses an optimal path from source to the sink to forward the packets with the sole objective to improve the network lifetime by balancing the energy among the nodes in the network and at the same time selecting good quality links along the path to guarantee that node energy is not wasted due to frequent retransmissions. The second phase of the work develops a SIBER-DELTA model, which represents Swarm Intelligence Based Efficient Routing protocol for WSN taking into account Distance, Energy, Link Quality, and Trust Awareness. WSNs are prone to behavior related attacks due to the misbehavior of nodes in forwarding the packets. Hence, trust aware routing is important not only to protect the information but also to protect network performance from degradation and protect network resources from undue consumption. Finally, third phase of the work involves the development of SIBER-DELTAKE hybrid model, an improved ACO-KM-ECC trust aware routing protocol based on ant colony optimization technique using K-Medoids (KM) algorithm for the formation of clusters with Elliptical Curve Cryptography (ECC). KM yields efficiency in setting up a cluster head and ECC mechanism enables secure routing with key generation and management. This model takes into account various critical parameters like distance, energy, link quality, and trust awareness to discover efficient routing

    Enhancing Bio-inspired Intrusion Response in Ad-hoc Networks

    Get PDF
    Practical applications of Ad-hoc networks are developing everyday and safeguarding their security is becoming more important. Because of their specific qualities, ad-hoc networks require an anomaly detection system that adapts to its changing behaviour quickly. Bio-inspired algorithms provide dynamic, adaptive, real-time methods of intrusion detection and particularly in initiating a response. A key component of bio-inspired response methods is the use of feedback from the network to better adapt their response to the specific attack and the type of network at hand. However, calculating an appropriate length of time at which to provide feedback is crucial - premature feedback or delayed feedback from the network can have adverse effects on the attack mitigation process. The antigen-degeneracy response selection algorithm (Schaust & Szczerbicka, 2011) is one of the few bio-inspired algorithms for selecting the appropriate response for misbehavior that considers network performance and adapts to the network. The main drawback of this algorithm is that it has no measure of the amount of time to wait before it can take performance measurements (feedback) from the network. In this thesis, we attempt to develop an understanding of the length of time required before feedback is provided in a range of types of ad-hoc network that have been subject of an attack, in order that future development of bio-inspired intrusion detection algorithms can be enhanced.Aiming toward an adaptive timer, we discuss that ad-hoc networks can be divided into Wireless Sensor Network (WSN), Wireless Personal Area Network (WPAN) and Spontaneously Networked Users (SNU). We use ns2 to simulate these three different types of ad-hoc networks, each of which is analysed for changes in its throughput after an attack is responded to, in order to calculate the corresponding feedback time. The feedback time in this case is the time it takes for the network to stabilise. Feedback time is not only essential to bio-inspired intrusion response methods, but can also be used in network applications where a stable network reading is required, e.g. security monitoring and motion tracking.Interestingly, we found that the network feedback time does not vary greatly between the different types of networks, but it was calculated to be less than half of what Schaust and Szczerbicka used in their algorith

    A critical analysis of mobility management related issues of wireless sensor networks in cyber physical systems

    Get PDF
    Mobility management has been a long-standing issue in mobile wireless sensor networks and especially in the context of cyber physical systems; its implications are immense. This paper presents a critical analysis of the current approaches to mobility management by evaluating them against a set of criteria which are essentially inherent characteristics of such systems on which these approaches are expected to provide acceptable performance. We summarize these characteristics by using a quadruple set of metrics. Additionally, using this set we classify the various approaches to mobility management that are discussed in this paper. Finally, the paper concludes by reviewing the main findings and providing suggestions that will be helpful to guide future research efforts in the area
    • …
    corecore