1,893 research outputs found

    Performance evaluation of an IEEE 802.15.4 sensor network with a star topology

    Get PDF
    One class of applications envisaged for the IEEE 802.15.4 LR-WPAN (low data rate-wireless personal area network) standard is wireless sensor networks for monitoring and control applications. In this paper we provide an analytical performance model for a network in which the sensors are at the tips of a star topology, and the sensors need to transmit their measurements to the hub node so that certain objectives for packet delay and packet discard are met. We first carry out a saturation throughput analysis of the system; i.e., it is assumed that each sensor has an infinite backlog of packets and the throughput of the system is sought. After a careful analysis of the CSMA/CA MAC that is employed in the standard, and after making a certain decoupling approximation, we identify an embedded Markov renewal process, whose analysis yields a fixed point equation, from whose solution the saturation throughput can be calculated. We validate our model against ns2 simulations (using an IEEE 802.15.4 module developed by Zheng [14]). We find that with the default back-off parameters the saturation throughput decreases sharply with increasing number of nodes. We use our analytical model to study the problem and we propose alternative back-off parameters that prevent the drop in throughput. We then show how the saturation analysis can be used to obtain an analytical model for the finite arrival rate case. This finite load model captures very well the qualitative behavior of the system, and also provides a good approximation to the packet discard probability, and the throughput. For the default parameters, the finite load throughput is found to first increase and then decrease with increasing load. We find that for typical performance objectives (mean delay and packet discard) the packet discard probability would constrain the system capacity. Finally, we show how to derive a node lifetime analysis using various rates and probabilities obtained from our performance analysis model

    Energy Efficient and Reliable Wireless Sensor Networks - An Extension to IEEE 802.15.4e

    Get PDF
    Collecting sensor data in industrial environments from up to some tenth of battery powered sensor nodes with sampling rates up to 100Hz requires energy aware protocols, which avoid collisions and long listening phases. The IEEE 802.15.4 standard focuses on energy aware wireless sensor networks (WSNs) and the Task Group 4e has published an amendment to fulfill up to 100 sensor value transmissions per second per sensor node (Low Latency Deterministic Network (LLDN) mode) to satisfy demands of factory automation. To improve the reliability of the data collection in the star topology of the LLDN mode, we propose a relay strategy, which can be performed within the LLDN schedule. Furthermore we propose an extension of the star topology to collect data from two-hop sensor nodes. The proposed Retransmission Mode enables power savings in the sensor node of more than 33%, while reducing the packet loss by up to 50%. To reach this performance, an optimum spatial distribution is necessary, which is discussed in detail

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Experimental evaluation of ZigBee and IEEE 802.15.4 for data-intensive body sensor networks

    Get PDF
    This paper presents results concerning an experimental performance evaluation of ZigBee and IEEE 802.15.4 networks applied to the transport of data-intensive traffic generated by body sensor network applications. The experimental platform is based on the Z-Stack and TIMAC software stacks and the CC2530 device, from Texas Instruments. Three quality of service metrics are evaluated: goodput, delivery ratio and delay. Results are provided for both star and tree topologies. It was observed that the overhead introduced by the stack implementation has a significant impact on the performance results. Overall, the performance of the ZigBee star topology was very good, even in the worst conditions, provided the acknowledgement mechanism was enabled. A router deadlock problem detected in other ZigBee implementations was not observed with the Z-Stack. However, we identified two different situations, triggered by periods of high traffic load, on which the ZigBee router stops relaying packets, causing a significant degradation on the network performance.Fundação para a Ciência e a Tecnologia (FCT

    Engine performance characteristics and evaluation of variation in the length of intake plenum

    Get PDF
    In the engine with multipoint fuel injection system using electronically controlled fuel injectors has an intake manifold in which only the air flows and, the fuel is injected into the intake valve. Since the intake manifolds transport mainly air, the supercharging effects of the variable length intake plenum will be different from carbureted engine. Engine tests have been carried out with the aim of constituting a base study to design a new variable length intake manifold plenum. The objective in this research is to study the engine performance characteristics and to evaluate the effects of the variation in the length of intake plenum. The engine test bed used for experimental work consists of a control panel, a hydraulic dynamometer and measurement instruments to measure the parameters of engine performance characteristics. The control panel is being used to perform administrative and management operating system. Besides that, the hydraulic dynamometer was used to measure the power of an engine by using a cell filled with liquid to increase its load. Thus, measurement instrument is provided in this test to measure the as brake torque, brake power, thermal efficiency and specific fuel consumption. The results showed that the variation in the plenum length causes an improvement on the engine performance characteristics especially on the fuel consumption at high load and low engine speeds which are put forward the system using for urban roads. From this experiment, it will show the behavior of engine performance

    Wireless Sensor Networks:A case study for Energy Efficient Environmental Monitoring

    No full text
    Energy efficiency is a key issue for wireless sensor networks, since sensors nodes can often be powered by non-renewable batteries. In this paper, we examine four MAC protocols in terms of energy consumption, throughput and energy efficiency. A forest fire detection application has been simulated using the well-known ns-2 in order to fully evaluate these protocols
    • …
    corecore