483 research outputs found

    Characterization, modeling and simulation of the MIMO propagation channel

    Get PDF
    International audienceThis article deals with several aspects relative to the MIMO propagation channel. Based on simulations and/or measurements, different approaches are used to model the propagation channel. These models are useful for the MIMO system design. Several studies are performed in order to realize realistic simulation of MIMO channel. Different measurement techniques are used in characterizing the propagation channel in various environments. Measurement campaigns made in different situations have been analyzed to obtain the relevant statistical parameters of the channel. Simulation of MIMO channel is then presented. Measurement and simulation results provide an evaluation of the capacity of MIMO channel. Obtained results show feasibility in the integration of MIMO techniques in practical wireless communication systems.Cet article traite de plusieurs aspects relatifs au canal de propagation MIMO. Différentes approches, basées sur des simulations et des mesures, utilisées pour modéliser le canal sont d’abord présentées. Ensuite, les différentes techniques de mesure utilisées dans le but de caractériser le canal de propagation dans divers milieux sont décrites. Des campagnes de mesures effectuées dans différents environnements sont analysées pour obtenir les paramètres statistiques du canal. Quelques problématiques liées à la simulation du canal MIMO sont évoquées notamment en lien avec une simulation réaliste dans des milieux complexes. Les résultats obtenus, en simulation comme en mesure, permettent une évaluation de la capacité du canal MIMO. Ces résultats permettent de discuter de l’intégration des techniques MIMO dans des systèmes de communication sans fil

    Extending TDL based non-WSSUS vehicle-to-everything channel model

    Get PDF
    In den vergangenen Jahrzehnten haben drahtlose Kommunikationssysteme eine rasante Entwicklung durchgemacht und es wurden viele Untersuchungen durchgeführt, seit Maxwell die Existenz von elektromagnetischer Wellen vorausgesagt hat. In den letzten Jahren hat die Forschung im Bereich der vehicle to X (V2X)-Kommunikation stetig zugenommen. V2X beschreibt die Fähigkeit, Daten zwischen einem Fahrzeug oder vehicle (V) und “allem” zu übertragen. In Zukunft könnten Fahrzeuge mit ihrer Umgebung kommunizieren, um Verkehrsunfälle zu vermeiden und Staus zu verringern. Dazu werden sie ihr Geschwindigkeits- und Positionsdaten über Ad-hoc-Fahrzeugnetze senden und empfangen können. Um die Verkehrssicherheit zu erhöhen, ist eine zuverlässige Kommunikationsverbindung notwendig. Die größte Herausforderung bei der Fahrzeugkommunikation besteht darin, dass sich die Eigenschaften des Physical Layers aufgrund der inhärenten Mobilität innerhalb des Kanals, der hohen Fahrzeuggeschwindigkeiten, der unterschiedlichen Antennenpositionen und der vielen Handover aufgrund kleinerer Zellen schnell ändern. Dies bringt eine Reihe von Herausforderungen in Bezug auf die Kanalcharakterisierung mit sich. Es handelt sich um einen Kanal mit starker Zeitvarianz und es treten viele Übergänge auf. Somit handelt es sich um einen nicht-stationärer (non-stationary) Kanal. Das Hauptziel dieser Untersuchung ist es, eine Methode zu finden, mit der der Kanal einer komplexen Umgebung in einer einfachen Form mit weniger strengen Beziehungen zur Geometrie dargestellt werden kann. Dabei werden die statistischen Eigenschaften ähnlich der Messdaten beibehalten. In dieser Arbeit werden nichtstationäre tapped delay line (TDL)-Modelle verwendet, um vehicle to infrastructure (V2I)-Kanäle zu beschreiben. Es wird eine neue Strategie zur Extraktion von TDL-Kanalmodellparametern aus Messdaten vorgeschlagen. Dieser Ansatz basiert auf einer bestehenden Methode zur Ableitung von Parametern für ein TDLModell. Es wird gezeigt, dass mit einer anderen Methode zur Auswahl der Taps die Anzahl der Abgriffe, die zur Rekonstruktion der root mean square delay spread (RMS-DS) eines Kanals erforderlich sind, erheblich reduziert werden kann. Ein neuer Ansatz zur überprüfen der Korrektheit der Ableitung der Kanalmodellparameter wird aufgezeigt. Die Durchführbarkeit der Methode wird anhand von Channel Sounding Messungen bestätigt. In dieser Dissertation wird ein Generator zur Erzeugung von Kanalimpulsantworten entwickelt und das nichtstationäre Verhalten der Kanäle durch die Verwendung eines ON/OFF-Prozesses beschrieben. Es werden Markov-Ketten unterschiedlicher Ordnung modelliert, um das nicht-stationäre Verhalten besser zu erfassen. Die Untersuchung zeigt, dass Markov-Ketten erster Ordnung mit zwei Zuständen vorzuziehen sind, um das häufige ON/OFF-Verhalten von Mehrwegpfaden darzustellen, und dass die Markov-Modelle zweiter und dritter Ordnung keine großen Auswirkungen haben. Eine Methode zur Erweiterung eines single input single output (SISO)-TDL-Modells auf multiple input multiple output (MIMO) unter der non-wide sense stationary uncorrelated scattering (non-WSSUS)-Annahme wird eingeführt, um TDL-Kanalmodelle für V2I MIMO-Systeme zu entwickeln. Die Analyse bewertet die SISO- mit der MIMO-Konfiguration in Bezug auf die Kanalkapazität. Es werden verschiedene MIMO-Konfigurationen untersucht, und es wird gezeigt, dass die Position der Antennen eine wichtige Rolle spielt. Die Verwendung von nur vier Antennen am transmitter (Tx) und receiver (Rx), die in unterschiedliche Richtungen abstrahlen, führt zu einem qualitativen Sprung in der Leistungsfähigkeit des Systems.In the past decades, wireless communication systems have undergone rapid development, and many investigations have been done since Maxwell predicted the existence of electromagnetic waves. In recent years, vehicle to X (V2X) communication research has been growing steadily. V2X describes the ability to transmit data between a vehicle (V) and “everything”. In the future, vehicles might be able to communicate with their environment to prevent traffic accidents and reduce congestion by allowing vehicles to transmit and receive data through a vehicular ad hoc network at their speed and position. In order to achieve the ultimate goal of enhancing transportation safety, it is crucial to establish reliable communication links. The main challenge of vehicular communications introduces new properties because the physical layer properties are rapidly changing due to inherent mobility within the channel, high vehicle speeds, varying antenna positions, and many handovers due to smaller cells. This brings up a number of challenges in terms of channel characterization because it is a strong time-variant channel and many transitions occur; therefore, it is a non-stationary channel. In this thesis, non-stationary tapped delay line (TDL) models are used to describe the vehicle to infrastructure (V2I) channels. This thesis proposes a new strategy to extract TDL channel model parameters from measurement data. The proposed approach is based on an existing method to derive parameters for a TDL model. It will be shown that with a different method of choosing taps, the number of taps necessary to regenerate the root mean square delay spread (RMS-DS) of a channel can be significantly reduced. An approach is proposed to verify the correctness of the channel model parameters derivation. The feasibility of the method will be confirmed using channel-sounding measurements. This dissertation devises a generator to produce channel impulse responses (CIRs) and describes the non-stationary behavior of the channels via employing an ON/OFF process. Different order Markov chains are modeled with the aim of better capturing the non-stationary behavior. The investigation shows that first-order two-state Markov chains are preferable to represent multipath’s frequent ON/OFF behavior, and the second- and third-order Markov models do not make enormous effects. A method for extending a single input single output (SISO)-TDL model to multiple input multiple output (MIMO) under non-wide sense stationary uncorrelated scattering (non-WSSUS) assumption is introduced to develop TDL channel models for the V2I MIMO systems. The analysis evaluates SISO- with MIMO configuration in terms of channel capacity. Different MIMO configurations are explored, and it will be illustrated that the position of antennas plays an important role. Using only four antennas at the transmitter (Tx) and receiver (Rx) that radiate towards different directions will make a qualitative leap in the performance of the system

    Performance degradation due to multipath noise for narrowband OFDM systems: channel-based analysis and experimental determination

    Get PDF
    The performance of OFDM systems over a multipath channel can strongly degrade due to the propagation delay spread. The distortion of the received signal over the fast Fourier transform window is referred to as multipath noise. This work aims to analytically determine the performance loss due to multipath noise as a function of OFDM and channel parameters for narrowband OFDM systems. First, it is investigated whether it is possible to describe the multipath noise, varying over different OFDM packets due to the temporal variation of the channel, by an effective noise factor F-delay, from which the loss factor is directly determined. Second, the theory of room electromagnetics is applied to develop a closed-form expression for F-delay as a function of the OFDM and reverberation parameters. This analytical method is validated with excellent agreement. Finally, the loss factor is determined for IEEE 802.11 based on channel measurements in two large conference rooms, providing values up to 19 dB for an 800 ns cyclic prefix length

    On simplifying WINNER II channel model for MIMO OTA performance evaluation

    Get PDF
    The development of MIMO over-the-air (OTA) test methodology is an ongoing activity in 3GPP RAN4, CTIA and EU COST Action 2100. In this paper, the focus is on the anechoic chamber approach, which uses a uniform circular array of probe antennas to replicate directional channels for the device-under- test at the array center. In particular, we study in simulation the complexity requirements of implementing the WINNER II clustered delay line (CDL) model in RF using off-the-shelf RF components. Our results reveal that a significant reduction in complexity of the CDL model can be achieved, while keeping the change in both ergodic and outage capacities under 10% relative to the full model. This suggests that it is both feasible and cost effective in implementing state-of-the-art directional channel models in RF for MIMO OTA performance evaluations

    STBC MC-CDMA systems for indoor and outdoor scenarios

    No full text
    We compare the performance of Alamouti's space-time block coded MC-CDMA systems for indoor and outdoor realistic scenarios with zero forcing or minimum mean square error detection schemes. Two different configurations of the system are considered for the two scenarios. The different results obtained as well for indoor as for outdoor scenarios demonstrate that spatial diversity improves significantly the performance of MC-CDMA systems. Then, Alamouti's STBC MC-CDMA schemes derive full benefit from the frequency and spatial diversities and can be considered as a very realistic and promising candidate for the air interface downlink of the 4th generation mobile radio systems

    Mobile WiMAX: impact of mobility on the performance of limited feedback linear precoding

    Get PDF

    System-level assessment of low complexity hybrid precoding designs for massive MIMO downlink transmissions in beyond 5G networks

    Get PDF
    The fast growth experienced by the telecommunications field during the last few decades has been motivating the academy and the industry to invest in the design, testing and deployment of new evolutions of wireless communication systems. Terahertz (THz) communication represents one of the possible technologies to explore in order to achieve the desired achievable rates above 100 Gbps and the extremely low latency required in many envisioned applications. Despite the potentialities, it requires proper system design, since working in the THz band brings a set of challenges, such as the reflection and scattering losses through the transmission path, the high dependency with distance and the severe hardware constraints. One key approach for overcoming some of these challenges relies on the use of massive/ultramassive antenna arrays combined with hybrid precoders based on fully connected phase-shifter architectures or partially connected architectures, such as arrays of subarrays (AoSAs) or dynamic AoSAs (DAoSAs). Through this strategy, it is possible to obtain very high-performance gains while drastically simplifying the practical implementation and reducing the overall power consumption of the system when compared to a fully digital approach. Although these types of solutions have been previously proposed to address some of the limitations of mmWave/THz communications, a lack between link-level and system-level analysis is commonly verified. In this paper, we present a thorough system-level assessment of a cloud radio access network (C-RAN) for beyond 5G (B5G) systems where the access points (APs) operate in the mmWave/THz bands, supporting multi-user MIMO (MU-MIMO) transmission with massive/ultra-massive antenna arrays combined with low-complexity hybrid precoding architectures. Results showed that the C-RAN deployments in two indoor office scenarios for the THz were capable of achieving good throughput and coverage performances, with only a small compromise in terms of gains when adopting reduced complexity hybrid precoders. Furthermore, we observed that the indoor-mixed office scenario can provide higher throughput and coverage performances independently of the cluster size when compared to the indoor-open office scenario.info:eu-repo/semantics/publishedVersio
    • …
    corecore