319 research outputs found

    TCP throughput guarantee in the DiffServ Assured Forwarding service: what about the results?

    Get PDF
    Since the proposition of Quality of Service architectures by the IETF, the interaction between TCP and the QoS services has been intensively studied. This paper proposes to look forward to the results obtained in terms of TCP throughput guarantee in the DiffServ Assured Forwarding (DiffServ/AF) service and to present an overview of the different proposals to solve the problem. It has been demonstrated that the standardized IETF DiffServ conditioners such as the token bucket color marker and the time sliding window color maker were not good TCP traffic descriptors. Starting with this point, several propositions have been made and most of them presents new marking schemes in order to replace or improve the traditional token bucket color marker. The main problem is that TCP congestion control is not designed to work with the AF service. Indeed, both mechanisms are antagonists. TCP has the property to share in a fair manner the bottleneck bandwidth between flows while DiffServ network provides a level of service controllable and predictable. In this paper, we build a classification of all the propositions made during these last years and compare them. As a result, we will see that these conditioning schemes can be separated in three sets of action level and that the conditioning at the network edge level is the most accepted one. We conclude that the problem is still unsolved and that TCP, conditioned or not conditioned, remains inappropriate to the DiffServ/AF service

    GTFRC, a TCP friendly QoS-aware rate control for diffserv assured service

    Get PDF
    This study addresses the end-to-end congestion control support over the DiffServ Assured Forwarding (AF) class. The resulting Assured Service (AS) provides a minimum level of throughput guarantee. In this context, this article describes a new end-to-end mechanism for continuous transfer based on TCP-Friendly Rate Control (TFRC). The proposed approach modifies TFRC to take into account the QoS negotiated. This mechanism, named gTFRC, is able to reach the minimum throughput guarantee whatever the flow’s RTT and target rate. Simulation measurements and implementation over a real QoS testbed demonstrate the efficiency of this mechanism either in over-provisioned or exactly-provisioned network. In addition, we show that the gTFRC mechanism can be used in the same DiffServ/AF class with TCP or TFRC flows

    Network level performance of differentiated services (diffserv) networks

    Get PDF
    The Differentiated Services (DiffServ) architecture is a promising means of providing Quality of Service (QoS) in Internet. In DiffServ networks, three service classes, or Per-hop Behaviors (PHBs), have been defined: Expedited Forwarding (EF), Assured Forwarding (AF) and Best Effort (BE). In this dissertation, the performance of DiffServ networks at the network level, such as end-to-end QoS, network stability, and fairness of bandwidth allocation over the entire network have been extensively investigated. It has been shown in literature that the end-to-end delay of EF traffic can go to infinity even in an over-provisioned network. In this dissertation, a simple scalable aggregate scheduling scheme, called Youngest Serve First (YSF) algorithm is proposed. YSF is not only able to guarantee finite end-to-end delay, but also to keep a low scheduling complexity. With respect to the Best Effort traffic, Random Exponential Marking (REM), an existing AQM scheme is studied under a new continuous time model, and its local stable condition is presented. Next, a novel virtual queue and rate based AQM scheme (VQR) is proposed, and its local stability condition has been presented. Then, a new AQM framework, Edge-based AQM (EAQM) is proposed. EAQM is easier to implement, and it achieves similar or better performance than traditional AQM schemes. With respect to the Assured Forwarding, a network-assist packet marking (NPM) scheme has been proposed. It has been demonstrated that NPM can fairly distribute bandwidth among AF aggregates based on their Committed Information Rates (CIRs) in both single and multiple bottleneck link networks

    gTFRC: a QoS-aware congestion control algorithm

    Get PDF
    This study addresses the end-to-end congestion control support over the DiffServ Assured Forwarding (AF) class. The resulting Assured Service (AS) provides a minimum level of throughput guarantee. In this context, this paper describes a new end-to-end mechanism for continuous transfer based on TCP-Friendly Rate Control (TFRC) originally proposed in [11]. The proposed approach modifies TFRC to take into account the QoS negotiated. This mechanism, named gTFRC, is able to reach the minimum throughput guarantee whatever the flow's RTT and target rate. Simulation measurements show the efficiency of this mechanism either in over-provisioned or exactly-provisioned network. In addition, we show that the gTFRC mechanism can be used in the same DiffServ/AF class with TCP or TFRC flows

    Design, implementation and evaluation of a QoS-aware transport protocol

    Get PDF
    In the context of a reconfigurable transport protocol framework, we propose a QoS-aware Transport Protocol (QSTP), specifically designed to operate over QoS-enabled networks with bandwidth guarantee. QSTP combines QoS-aware TFRC congestion control mechanism, which takes into account the network-level bandwidth reservations, with a Selective ACKnowledgment (SACK) mechanism in order to provide a QoS-aware transport service that fill the gap between QoS enabled network services and QoS constraint applications. We have developed a prototype of this protocol in the user-space and conducted a large range of measurements to evaluate this proposal under various network conditions. Our results show that QSTP allows applications to reach their negotiated QoS over bandwidth guaranteed networks, such as DiffServ/AF network, where TCP fails. This protocol appears to be the first reliable protocol especially designed for QoS network architectures with bandwidth guarantee

    Implementation and performance analysis of a QoS-aware TFRC mechanism

    Get PDF
    This paper deals with the improvement of transport protocol behaviour over the DiffServ Assured Forwarding (AF)class. The Assured Service (AS) provides a minimum throughput guarantee that classical congestion control mechanisms, like window-based in TCP or equation-based in TCP-Friendly Rate Control (TFRC), are not able to use efficiently. In response, this paper proposes a performance analysis of a QoS aware congestion control mechanism, named gTFRC, which improves the delivery of continuous streams. The gTFRC (guaranteed TFRC) mechanism has been integrated into an Enhanced Transport Protocol (ETP) that allows protocol mechanisms to be dynamically managed and controlled. After comparing a ns-2 simulation and our implementation of the basic TFRC mechanism, we show that ETP/gTFRC extension is able to reach a minimum throughput guarantee whatever the flow’s RTT and target rate (TR) and the network provisioning conditions

    Contributions based on cross-layer design for quality-of-service provisioning over DVB-S2/RCS broadband satellite system

    Get PDF
    Contributions based on cross-layer design for Quality-of-Service provisioning over DVB-S2/RCS Broadband Satellite Systems Nowadays, geostationary (GEO) satellite infrastructure plays a crucial role for the provisioning of IP services. Such infrastructure can provide ubiquity and broadband access, being feasible to reach disperse populations located worldwide within remote areas where terrestrial infrastructure can not be deployed. Nevertheless, due to the expansion of the World Wide Web (WWW), new IP applications such as Voice over IP (VoIP) and multimedia services requires considering different levels of individual packet treatment through the satellite network. This differentiation must include not only the Quality of Service (QoS) parameters to specify packet transmission priorities across the network nodes, but also the required amount of bandwidth assignment to guarantee its transport. In this context, the provisioning of QoS guarantees over GEO satellite systems becomes one of the main research areas of organizations such as the European Space Agency (ESA). Mainly because, their current infrastructures require continuous exploitation, as launching a new communication satellite is associated with excessive costs. Therefore, the support of IP services with QoS guarantees must be developed on the terrestrial segment to enable using the current assets. In this PhD thesis several contributions to improve the QoS provisioning over DVB-S2/RCS Broadband Satellite Systems have been developed. The contributions are based on cross-layer design, following the layered model standardized in the ETSI TR 102 157 and 462. The proposals take into account the drawbacks posed by GEO satellite systems such as delay, losses and bandwidth variations. The first contribution proposes QoSatArt, an architecture defined to improve QoS provisioning among services classes considering the physical layer variations due to the presence of rain events. The design is developed inside the gateway, including the specification of the main functional blocks to provide QoS guarantees and mechanisms to minimize de delay and jitter values experienced at the application layer. Here, a cross-layer design between the physical and the network layer has been proposed, to enforce the QoS specifications based on the available bandwidth. The proposed QoSatArt architecture is evaluated using the NS-2 simulation tool. In addition, the performance analysis of several standard Transmission Control Protocol (TCP) variants is also performed. This is carry out to find the most suitable TCP variant that enhances TCP transmission over a QoS architecture such as the QoSatArt. The second contribution proposes XPLIT, an architecture developed to enhance TCP transmission with QoS for DVB-S2/RCS satellite systems. Complementary to QoSatArt, XPLIT introduces Performance Enhanced Proxies (PEPs), which breaks the end-to-end semantic of TCP connections. However, it considers a cross-layer design between the network layer and the transport layer to enhance TCP transmission while providing them with QoS guarantees. Here, a modified TCP variant called XPLIT-TCP is proposed to send data through the forward and the return channel. XPLIT-TCP uses two control loops (the buffer occupancy and the service rate to provide optimized congestion control functions. The proposed XPLIT architecture is evaluated using the NS-2 simulation tool. Finally, the third contribution of this thesis consists on the development of a unified architecture to provide QoS guarantees based on cross-layer design over broadband satellite systems. It adopts the enhancements proposed by the QoSatArt architecture working at the network layer, in combination with the enhancements proposed by the XPLIT architecture working at the transport layer.Actualmente, los satélites Geoestacionarios (GEO) juegan un papel muy importante en la provisión de servicios IP. Esta infraestructura permite proveer ubicuidad y acceso de banda ancha, haciendo posible alcanzar poblaciones dispersas en zonas remotas donde la infraestructura terrestre es inexistente. Sin embargo, en la provisión de aplicaciones como Voz sobre IP (VoIP) y servicios multimedia, es importante considerar el tratamiento diferenciado de paquetes a través de la red satelital. Esta diferenciación debe considerar no solo los requerimientos de Calidad de Servicio (QoS) que especifican las prioridades de los paquetes a través de los nodos de red, si no también el ancho de banda asignado para garantizar su transporte. En este contexto, la provisión de garantías de QoS sobre satélites GEO es una de las Principales áreas de investigación de organizaciones como la Agencia Espacial Europea (ESA) persiguen. Esto se debe principalmente ya que dichas organizaciones requieren la explotación continua de sus activos, dado que lanzar un nuevo satélite al espacio representa costos excesivos. Como resultado, el soporte de servicios IP con calidad de servicio sobre la infraestructura satelital actual es de vital importancia. En esta tesis doctoral se presentan varias contribuciones para el soporte a la Calidad de Servicio en redes DVB-S2/RCS satelitales de banda ancha. Las contribuciones propuestas se basan principalmente en el diseño ”cross-layer” siguiendo el modelo de capas definido y estandarizado en las especificaciones ETSI TR 102 157 [ETS03] y 462 [10205]. Las contribuciones propuestas consideran las limitaciones presentes de los sistemas satelitales GEO como lo son el retardo de propagación, la perdida de paquetes y las variaciones de ancho de banda causados por eventos atmosféricos. La primera contribución propone QoSatArt, una arquitectura definida para mejorar el soporte a la QoS. Esta arquitectura considera las variaciones en la capa física debido a la presencia de eventos de lluvia para priorizar los niveles de QoS. El diseño se desarrolla en el gateway e incluye las especificaciones de los principales elementos funcionales y mecanismos para garantizar la QoS y minimizar el retardo presente en la capa de aplicación. Aquí, se propone un diseño ”cross-layer” entre la capa física y la capa de red, con el objetivo de reforzar las especificaciones de QoS considerando el ancho de banda disponible. La arquitectura QoSatArt es simulada y evaluada empleando la herramienta de simulación NS-2. Adicionalmente, un análisis de desempeño de diversas variantes de TCP (Transmission Control Protocol) es realizado con el objetivo de encontrar la variante de TCP más adecuada para trabajar en un ambiente con QoS como QoSatArt. La segunda contribución propone XPLIT, una arquitectura desarrollada para mejorar las transmisiones TCP con QoS en un sistema satelital DVB-S2/RCS. Complementario a QoSatArt, XPLIT emplea PEPs (Performance Enhanced Proxies), afectando la semántica end-to-end de las conexiones TCP. Sin embargo, XPLIT considera un diseño ”cross-layer” entre la capa de red y la capa de transporte con el objetivo de mejorar las transmisiones TCP considerando los parámetros de QoS como la ocupación de la cola y la tasa de transmisión (_i, _i). Aquí, se propone el uso de una nueva variante de TCP es propuesta llamada XPLIT-TCP, que usa dos bucles para proveer funciones mejoradas en el control de congestión. La arquitectura XPLIT es simulada y evaluada empleando la herramienta de simulación NS-2. Finalmente, la tercera contribución de esta tesis consiste en el desarrollo de un arquitectura unificada para el soporte a la QoS en redes satelitales de banda ancha basada en técnicas ”cross-layer”. Esta arquitectura adopta las mejoras propuestas por QoSatArt en la capa de red en combinación con las mejoras propuestas por XPLIT en la capa de transporte

    Enhancement of perceived quality of service for voice over internet protocol systems

    Get PDF
    Voice over Internet Protocol (WIP) applications are becoming more and more popular in the telecommunication market. Packet switched V61P systems have many technical advantages over conventional Public Switched Telephone Network (PSTN), including its efficient and flexible use of the bandwidth, lower cost and enhanced security. However, due to the IP network's "Best Effort" nature, voice quality are not naturally guaranteed in the VoIP services. In fact, most current Vol]P services can not provide as good a voice quality as PSTN. IP Network impairments such as packet loss, delay and jitter affect perceived speech quality as do application layer impairment factors, such as codec rate and audio features. Current perceived Quality of Service (QoS) methods are mainly designed to be used in a PSTN/TDM environment and their performance in V6IP environment is unknown. It is a challenge to measure perceived speech quality correctly in V61P system and to enhance user perceived speech quality for VoIP system. The main goal of this project is to evaluate the accuracy of the existing ITU-T speech quality measurement method (Perceptual Evaluation of Speech Quality - PESQ) in mobile wireless systems in the context of V61P, and to develop novel and efficient methods to enhance the user perceived speech quality for emerging V61P services especially in mobile V61P environment. The main contributions of the thesis are threefold: (1) A new discovery of PESQ errors in mobile VoIP environment. A detailed investigation of PESQ performance in mobile VoIP environment was undertaken and included setting up a PESQ performance evaluation platform and testing over 1800 mobile-to-mobile and mobileto- PSTN calls over a period of three months. The accuracy issues of PESQ algorithm was investigated and main problems causing inaccurate PESQ score (improper time-alignment in the PESQ algorithm) were discovered . Calibration issues for a safe and proper PESQ testing in mobile environment were also discussed in the thesis. (2) A new, simple-to-use, V611Pjit ter buffer algorithm. This was developed and implemented in a commercial mobile handset. The algorithm, called "Play Late Algorithm", adaptively alters the playout delay inside a speech talkspurt without introducing unnecessary extra end-to-end delay. It can be used as a front-end to conventional static or adaptive jitter buffer algorithms to provide improved performance. Results show that the proposed algorithm can increase user perceived quality without consuming too much processing power when tested in live wireless VbIP networks. (3) A new QoS enhancement scheme. The new scheme combines the strengths of adaptive codec bit rate (i. e. AMR 8-modes bit rate) and speech priority marking (i. e. giving high priority for the beginning of a voiced segment). The results gathered on a simulation and emulation test platform shows that the combined method provides a better user perceived speech quality than separate adaptive sender bit rate or packet priority marking methods

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin
    corecore