19,564 research outputs found

    Definition of avionics concepts for a heavy lift cargo vehicle. Volume 1: Executive summary

    Get PDF
    A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is examined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility, although the lab is not limited in use to support of HLCVs. Volume 1 provides a summary of the vehicle avionics trade studies, the avionics lab objectives, a summary of the lab's functional requirements and design, physical facility considerations, and cost estimates

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    GADGET: A code for collisionless and gasdynamical cosmological simulations

    Full text link
    We describe the newly written code GADGET which is suitable both for cosmological simulations of structure formation and for the simulation of interacting galaxies. GADGET evolves self-gravitating collisionless fluids with the traditional N-body approach, and a collisional gas by smoothed particle hydrodynamics. Along with the serial version of the code, we discuss a parallel version that has been designed to run on massively parallel supercomputers with distributed memory. While both versions use a tree algorithm to compute gravitational forces, the serial version of GADGET can optionally employ the special-purpose hardware GRAPE instead of the tree. Periodic boundary conditions are supported by means of an Ewald summation technique. The code uses individual and adaptive timesteps for all particles, and it combines this with a scheme for dynamic tree updates. Due to its Lagrangian nature, GADGET thus allows a very large dynamic range to be bridged, both in space and time. So far, GADGET has been successfully used to run simulations with up to 7.5e7 particles, including cosmological studies of large-scale structure formation, high-resolution simulations of the formation of clusters of galaxies, as well as workstation-sized problems of interacting galaxies. In this study, we detail the numerical algorithms employed, and show various tests of the code. We publically release both the serial and the massively parallel version of the code.Comment: 32 pages, 14 figures, replaced to match published version in New Astronomy. For download of the code, see http://www.mpa-garching.mpg.de/gadget (new version 1.1 available

    Machine Learning-Based Elastic Cloud Resource Provisioning in the Solvency II Framework

    Get PDF
    The Solvency II Directive (Directive 2009/138/EC) is a European Directive issued in November 2009 and effective from January 2016, which has been enacted by the European Union to regulate the insurance and reinsurance sector through the discipline of risk management. Solvency II requires European insurance companies to conduct consistent evaluation and continuous monitoring of risks—a process which is computationally complex and extremely resource-intensive. To this end, companies are required to equip themselves with adequate IT infrastructures, facing a significant outlay. In this paper we present the design and the development of a Machine Learning-based approach to transparently deploy on a cloud environment the most resource-intensive portion of the Solvency II-related computation. Our proposal targets DISAR®, a Solvency II-oriented system initially designed to work on a grid of conventional computers. We show how our solution allows to reduce the overall expenses associated with the computation, without hampering the privacy of the companies’ data (making it suitable for conventional public cloud environments), and allowing to meet the strict temporal requirements required by the Directive. Additionally, the system is organized as a self-optimizing loop, which allows to use information gathered from actual (useful) computations, thus requiring a shorter training phase. We present an experimental study conducted on Amazon EC2 to assess the validity and the efficiency of our proposal

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    On Dynamic Monitoring Methods for Networks-on-Chip

    Get PDF
    Rapid ongoing evolution of multiprocessors will lead to systems with hundreds of processing cores integrated in a single chip. An emerging challenge is the implementation of reliable and efficient interconnection between these cores as well as other components in the systems. Network-on-Chip is an interconnection approach which is intended to solve the performance bottleneck caused by traditional, poorly scalable communication structures such as buses. However, a large on-chip network involves issues related to congestion problems and system control, for instance. Additionally, faults can cause problems in multiprocessor systems. These faults can be transient faults, permanent manufacturing faults, or they can appear due to aging. To solve the emerging traffic management, controllability issues and to maintain system operation regardless of faults a monitoring system is needed. The monitoring system should be dynamically applicable to various purposes and it should fully cover the system under observation. In a large multiprocessor the distances between components can be relatively long. Therefore, the system should be designed so that the amount of energy-inefficient long-distance communication is minimized. This thesis presents a dynamically clustered distributed monitoring structure. The monitoring is distributed so that no centralized control is required for basic tasks such as traffic management and task mapping. To enable extensive analysis of different Network-on-Chip architectures, an in-house SystemC based simulation environment was implemented. It allows transaction level analysis without time consuming circuit level implementations during early design phases of novel architectures and features. The presented analysis shows that the dynamically clustered monitoring structure can be efficiently utilized for traffic management in faulty and congested Network-on-Chip-based multiprocessor systems. The monitoring structure can be also successfully applied for task mapping purposes. Furthermore, the analysis shows that the presented in-house simulation environment is flexible and practical tool for extensive Network-on-Chip architecture analysis.Siirretty Doriast

    Hierarchically Clustered Adaptive Quantization CMAC and Its Learning Convergence

    Get PDF
    No abstract availabl
    • …
    corecore