110 research outputs found

    SATELLITE BASED DATA COMMUNICATION: A SURVEY

    Get PDF
    ABSTRACT Satellite communication is well known in providing best services where broadcasting is essential, where terrain is hostile and very sparsely populated. It also has niche where rapid deployment is very critical and important. In Global Network Infrastructure satellite is considered as an inseparable component of the communication infrastructure. A variety of research work has been explored and published for satellite based data communication & networking. It is utmost important to conduct a survey on different aspects and research issues of satellite based communication with a focus on the latest development. In this paper, we summarize, compare & comments on the approaches proposed for the satellite based data communication with keeping in view the parameters like Quality of service, Interplanetary Internet, Mobility management, explicit load balancing and packet reordering issue

    A TCP Driven CAC scheme: efficient resource utilization in a leaky HAP-satellite integrated scenario

    Get PDF
    An integrated high altitude platform (HAP)-satellite communication system appears to be very suitable for a large set of scenarios including emergency situations, exceptional events, etc. In fact, the satellite capability to provide a broadband and ubiquitous access can be enhanced by the deployment of HAP that allows the use of low-power consuming, cost-efficient, and portable terminals. To obtain an optimum utilization of radio resource, without renouncing to QoS satisfaction, a suitable call admission control scheme must be implemented. Nevertheless, transmission control protocol (TCP) behavior, mainly affected by the high latency and shadowing events, can impact call admission control (CAC) performance. Therefore, it would be desirable that the CAC scheme takes into account also the TCP congestion window real evolution. We present an innovative CAC scheme that uses TCP statistics as one of its inputs and is able to manage different classes of users. Results show that CAC performance is significantly improved by introducing TCP statistics about network congestion as an input parameter

    DragonNet: a robust mobile internet services system for long distance trains

    Get PDF
    Wide range wireless networks often suffer from annoying service deterioration due to ever-changing wireless environments. This is especially the case with passengers on long-distance trains (LDT, such as intercity, interprovincial, and international commuter trains) connecting to the Internet. To improve the service quality of wide-area wireless networks, we present the DragonNet system and protocol with practical implementations. The DragonNet system is a chained gateway that consists of a group of interlinked DragonNet routers running the DragonNet protocol for node failure amortization across the long stretching router chain. The protocol makes use of the spatial diversity of wireless signals when not all spots on a surface see the same level of radio frequency radiation. In the case of an LDT of around 500 meters, it is highly possible that some of the DragonNet routers in the gateway chain still see sound signal quality when the LDT is partially blocked from the wireless Internet. The DragonNet protocol fully utilizes this feature to amortize single-point router failure over the whole router chain by intelligently rerouting traffic on failed ones to sound ones. We have implemented the DragonNet system and tested it in real railways over a period of three months. Our results have pinpointed two fundamental contributions of the DragonNet protocol. First, DragonNet significantly reduces the average temporary communication blackout (i.e., no Internet connection) to 1.5 seconds compared with 6 seconds without the DragonNet protocol. Second, DragonNet nearly doubles the aggregate system throughput compared with gateway without running the DragonNet protocol

    Architectures and Key Technical Challenges for 5G Systems Incorporating Satellites

    Get PDF
    Satellite Communication systems are a promising solution to extend and complement terrestrial networks in unserved or under-served areas. This aspect is reflected by recent commercial and standardisation endeavours. In particular, 3GPP recently initiated a Study Item for New Radio-based, i.e., 5G, Non-Terrestrial Networks aimed at deploying satellite systems either as a stand-alone solution or as an integration to terrestrial networks in mobile broadband and machine-type communication scenarios. However, typical satellite channel impairments, as large path losses, delays, and Doppler shifts, pose severe challenges to the realisation of a satellite-based NR network. In this paper, based on the architecture options currently being discussed in the standardisation fora, we discuss and assess the impact of the satellite channel characteristics on the physical and Medium Access Control layers, both in terms of transmitted waveforms and procedures for enhanced Mobile BroadBand (eMBB) and NarrowBand-Internet of Things (NB-IoT) applications. The proposed analysis shows that the main technical challenges are related to the PHY/MAC procedures, in particular Random Access (RA), Timing Advance (TA), and Hybrid Automatic Repeat reQuest (HARQ) and, depending on the considered service and architecture, different solutions are proposed.Comment: Submitted to Transactions on Vehicular Technologies, April 201

    Architecture and evaluation of a unified V2V and V2I communication system based on cellular networks

    Get PDF
    Vehicle communications are becoming the cornerstone in the future vehicle equipment. More specifically, vehicle to vehicle communications (V2V) are the main object of researching nowadays, because vehicle to infrastructure (V2I) approximations are already being developed as commercial solutions. Cellular networks (CN) are usually applied in V2I solutions, whereas ad hoc networks are practically the only technology considered in V2V communications. Due to fact that CN are currently a reality and the operators are continuously improving the network, this communication technology could be considered as a candidate to deal with V2V necessities as well. The present paper defends the applicability of CN in the V2V field, and presents a novel communication paradigm for vehicles which unifies both V2V and V2I paradigms into one system. A peer to peer network technology has been used over the CN basis to create a group-based communication infrastructure which enables the message propagation among vehicles and between the car and the road side infrastructure. The architecture has been implemented in both hardware and software terms, and multitude of field tests have been carried out, whose main performance results are shown in the paper.The authors would like to thank the Spanish Ministerio the Educacion y Ciencia for sponsoring the research activities under the grant AP2005-1437, in frames of the FPU program, and to the financial support given by the European Spatial Agency (ESA) under the GIROADS 332599 project. Special thanks as well to the Spanish Ministerio the Fomento for its continuous support in vehicular researching

    Contributions based on cross-layer design for quality-of-service provisioning over DVB-S2/RCS broadband satellite system

    Get PDF
    Contributions based on cross-layer design for Quality-of-Service provisioning over DVB-S2/RCS Broadband Satellite Systems Nowadays, geostationary (GEO) satellite infrastructure plays a crucial role for the provisioning of IP services. Such infrastructure can provide ubiquity and broadband access, being feasible to reach disperse populations located worldwide within remote areas where terrestrial infrastructure can not be deployed. Nevertheless, due to the expansion of the World Wide Web (WWW), new IP applications such as Voice over IP (VoIP) and multimedia services requires considering different levels of individual packet treatment through the satellite network. This differentiation must include not only the Quality of Service (QoS) parameters to specify packet transmission priorities across the network nodes, but also the required amount of bandwidth assignment to guarantee its transport. In this context, the provisioning of QoS guarantees over GEO satellite systems becomes one of the main research areas of organizations such as the European Space Agency (ESA). Mainly because, their current infrastructures require continuous exploitation, as launching a new communication satellite is associated with excessive costs. Therefore, the support of IP services with QoS guarantees must be developed on the terrestrial segment to enable using the current assets. In this PhD thesis several contributions to improve the QoS provisioning over DVB-S2/RCS Broadband Satellite Systems have been developed. The contributions are based on cross-layer design, following the layered model standardized in the ETSI TR 102 157 and 462. The proposals take into account the drawbacks posed by GEO satellite systems such as delay, losses and bandwidth variations. The first contribution proposes QoSatArt, an architecture defined to improve QoS provisioning among services classes considering the physical layer variations due to the presence of rain events. The design is developed inside the gateway, including the specification of the main functional blocks to provide QoS guarantees and mechanisms to minimize de delay and jitter values experienced at the application layer. Here, a cross-layer design between the physical and the network layer has been proposed, to enforce the QoS specifications based on the available bandwidth. The proposed QoSatArt architecture is evaluated using the NS-2 simulation tool. In addition, the performance analysis of several standard Transmission Control Protocol (TCP) variants is also performed. This is carry out to find the most suitable TCP variant that enhances TCP transmission over a QoS architecture such as the QoSatArt. The second contribution proposes XPLIT, an architecture developed to enhance TCP transmission with QoS for DVB-S2/RCS satellite systems. Complementary to QoSatArt, XPLIT introduces Performance Enhanced Proxies (PEPs), which breaks the end-to-end semantic of TCP connections. However, it considers a cross-layer design between the network layer and the transport layer to enhance TCP transmission while providing them with QoS guarantees. Here, a modified TCP variant called XPLIT-TCP is proposed to send data through the forward and the return channel. XPLIT-TCP uses two control loops (the buffer occupancy and the service rate to provide optimized congestion control functions. The proposed XPLIT architecture is evaluated using the NS-2 simulation tool. Finally, the third contribution of this thesis consists on the development of a unified architecture to provide QoS guarantees based on cross-layer design over broadband satellite systems. It adopts the enhancements proposed by the QoSatArt architecture working at the network layer, in combination with the enhancements proposed by the XPLIT architecture working at the transport layer.Actualmente, los satélites Geoestacionarios (GEO) juegan un papel muy importante en la provisión de servicios IP. Esta infraestructura permite proveer ubicuidad y acceso de banda ancha, haciendo posible alcanzar poblaciones dispersas en zonas remotas donde la infraestructura terrestre es inexistente. Sin embargo, en la provisión de aplicaciones como Voz sobre IP (VoIP) y servicios multimedia, es importante considerar el tratamiento diferenciado de paquetes a través de la red satelital. Esta diferenciación debe considerar no solo los requerimientos de Calidad de Servicio (QoS) que especifican las prioridades de los paquetes a través de los nodos de red, si no también el ancho de banda asignado para garantizar su transporte. En este contexto, la provisión de garantías de QoS sobre satélites GEO es una de las Principales áreas de investigación de organizaciones como la Agencia Espacial Europea (ESA) persiguen. Esto se debe principalmente ya que dichas organizaciones requieren la explotación continua de sus activos, dado que lanzar un nuevo satélite al espacio representa costos excesivos. Como resultado, el soporte de servicios IP con calidad de servicio sobre la infraestructura satelital actual es de vital importancia. En esta tesis doctoral se presentan varias contribuciones para el soporte a la Calidad de Servicio en redes DVB-S2/RCS satelitales de banda ancha. Las contribuciones propuestas se basan principalmente en el diseño ”cross-layer” siguiendo el modelo de capas definido y estandarizado en las especificaciones ETSI TR 102 157 [ETS03] y 462 [10205]. Las contribuciones propuestas consideran las limitaciones presentes de los sistemas satelitales GEO como lo son el retardo de propagación, la perdida de paquetes y las variaciones de ancho de banda causados por eventos atmosféricos. La primera contribución propone QoSatArt, una arquitectura definida para mejorar el soporte a la QoS. Esta arquitectura considera las variaciones en la capa física debido a la presencia de eventos de lluvia para priorizar los niveles de QoS. El diseño se desarrolla en el gateway e incluye las especificaciones de los principales elementos funcionales y mecanismos para garantizar la QoS y minimizar el retardo presente en la capa de aplicación. Aquí, se propone un diseño ”cross-layer” entre la capa física y la capa de red, con el objetivo de reforzar las especificaciones de QoS considerando el ancho de banda disponible. La arquitectura QoSatArt es simulada y evaluada empleando la herramienta de simulación NS-2. Adicionalmente, un análisis de desempeño de diversas variantes de TCP (Transmission Control Protocol) es realizado con el objetivo de encontrar la variante de TCP más adecuada para trabajar en un ambiente con QoS como QoSatArt. La segunda contribución propone XPLIT, una arquitectura desarrollada para mejorar las transmisiones TCP con QoS en un sistema satelital DVB-S2/RCS. Complementario a QoSatArt, XPLIT emplea PEPs (Performance Enhanced Proxies), afectando la semántica end-to-end de las conexiones TCP. Sin embargo, XPLIT considera un diseño ”cross-layer” entre la capa de red y la capa de transporte con el objetivo de mejorar las transmisiones TCP considerando los parámetros de QoS como la ocupación de la cola y la tasa de transmisión (_i, _i). Aquí, se propone el uso de una nueva variante de TCP es propuesta llamada XPLIT-TCP, que usa dos bucles para proveer funciones mejoradas en el control de congestión. La arquitectura XPLIT es simulada y evaluada empleando la herramienta de simulación NS-2. Finalmente, la tercera contribución de esta tesis consiste en el desarrollo de un arquitectura unificada para el soporte a la QoS en redes satelitales de banda ancha basada en técnicas ”cross-layer”. Esta arquitectura adopta las mejoras propuestas por QoSatArt en la capa de red en combinación con las mejoras propuestas por XPLIT en la capa de transporte

    Mass-Market Receiver for Static Positioning: Tests and Statistical Analyses

    Get PDF
    Nowadays, there are several low cost GPS receivers able to provide both pseudorange and carrier phase measurements in the L1band, that allow to have good realtime performances in outdoor condition. The present paper describes a set of dedicated tests in order to evaluate the positioning accuracy in static conditions. The quality of the pseudorange and the carrier phase measurements let hope for interesting results. The use of such kind of receiver could be extended to a large number of professional applications, like engineering fields: survey, georeferencing, monitoring, cadastral mapping and cadastral road. In this work, the receivers performance is verified considering a single frequency solution trying to fix the phase ambiguity, when possible. Different solutions are defined: code, float and fix solutions. In order to solve the phase ambiguities different methods are considered. Each test performed is statistically analyzed, highlighting the effects of different factors on precision and accurac
    corecore