3 research outputs found

    Parametrien etsintä HEVC:n tehokkaalle moodivalinnalle

    Get PDF
    High Efficiency Video Coding (HEVC) is the latest video coding standard. It halves the achieved bit rate compared with the previous standard, Advanced Video Coding (AVC). However, the bit rate decrease comes with 40% increase in encoding complexity. This is mainly due to larger number of block coding modes, including Symmetric motion partitions (SMPs), Asymmetric motion partitions (AMPs), and larger coding units of up to 64x64 pixels. These new features are mainly used for Inter prediction that accounts for 60-70% of the whole encoding time. For this reason, optimization of Inter prediction is the main topic in this Thesis. To tackle the Inter prediction complexity, a parametric exploration was chosen as the approach. The exploration was done by gradually shifting the focus from the most coarse optimization to the parameter fine tuning. The selected approach in this study required thousands of individual tests so an automated solution was needed. This led to the creation of a new software solution, TUT Task Manager. It is capable of automatically distributing the tasks of parametric exploration to any number of nodes available in the local network. In total, TUT Task Manager was used to run 4000 tests with a combined CPU time of 14 months. The results were used to create a set of recommended schemes for Inter mode selection. Overall, these new schemes are shown to provide 31-50% complexity saving against the default configuration of HM 11.0, with a minor bit rate increase of 0.2-1.3%. They also provide better RDC performance than the existing solutions. The tools and methods used in this work are so generic that they can be used to further optimize other parts of the video codec

    Gestión de recursos energéticamente eficiente para aplicaciones paralelas basadas en tareas en entornos multi-aplicación

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Informática, leída el 28/01/2021The end of Dennard scaling, as well as the arrival of the post-Moore era, has meant a big change in the way performance and energy efficiency are achieved by modern processors. From a constant increase of the clock frequency as the main method to increase performance at the beginning of the 2000s, the increase in the number of cores inside processors running at relatively conservative frequencies has stabilised as the current trend to increase both performance and energy efficiency. The increase of the heterogeneity in the systems, both inside the processors comprising different types of cores (e.g., big LITTLE architectures) or adding specific compute units (like multimedia extensions), as well as in the platform by the addition of other specific compute units (like GPUs), offering different performance and energy-efficiency trade-offs. Together with the increase in the number of cores, the processor evolution has been accompanied by the addition of different techologies that allow processors to adapt dynamically to the changes in the environment and running aplications. Among others, techiniques like dynamic voltage and frequiency scaling, power capping or cache partitioning are widely used nowadays to increase the performance and/or energy-efficiency...El fin del escalado de Dennard, así como la llegada de la era post-Moore ha supuesto una gran revolución en la forma de obtener el rendimiento y eficiencia energética en los procesadores modernos. Desde un incremento constante en la frecuencia relativamente moderadas se ha impuesto como la tendencia actual para incrementar tanto el rendimiento como la eficiencia energética. El aumento del número de núcleos dentro del procesado ha venido acompañado en los últimos años por el aumento de la heterogeneidad en la plataforma, tanto dentro del procesador incorporando distintos tipos de núcleos en el mismo procesador (e.g., la arquitectura big.LITTLE) como añadiendo unidades de cómputo específicas (e.g., extensiones multimedia), como la incorporación de otros elementos de computo específicos, ofreciendo diferentes grados de rendimiento y eficiencia energética. La evolución de los procesadores no solo ha venido dictada por el aumento del número de núcleos, sino que ha venido acompañada por la incorporación de diferentes técnicas permitiendo la adaptación de las arquitecturas de forma dinámica al entorno así como a las aplicaciones en ejecución. Entre otras, técnicas como el escalado de frecuencia, la limitación de consumo o el particionado de la memoria caché son ampliamente utilizadas en la actualidad como métodos para incrementar el consumo y/o la eficiencia energética...Fac. de InformáticaTRUEunpu

    Performance Evaluation of Kvazaar HEVC Intra Encoder on Xeon Phi Many-core Processor

    Get PDF
    This paper analyzes parallel scalability and coding speed of our open-source Kvazaar HEVC intra encoder on Intel Xeon Phi 61-core coprocessor that supports up to four hardware threads per core. The evaluated parallelization schemes of Kvazaar are 1) Wavefront Parallel Processing (WPP); and 2) tiles, both accelerated with picture-level parallel processing. With WPP, the C implementation of Kvazaar high-quality preset achieves an average speedup of 1.3 and a bit rate gain of 0.7% over the respective implementation of x265. Using tiles makes Kvazaar 1.4 times faster than x265 but at a cost of 0.3% bit rate loss. When high-speed presets are used, the speedup of Kvazaar increases to 1.4 with WPP and to 1.9 with tiles. Moreover, the respective coding efficiency of Kvazaar rises to 11.2% and 10.3%. Kvazaar also scales almost linearly to the number of cores in the processor. Even if the peak coding speed of Kvazaar on Xeon Phi is lower than that on the Intel 8-core i7 processor, our parallel scalability results promise excellent speed for Kvazaar on massively parallel processors equipped with more powerful cores.acceptedVersionPeer reviewe
    corecore