914 research outputs found

    MIMO In Vivo

    Full text link
    We present the performance of MIMO for in vivo environments, using ANSYS HFSS and their complete human body model, to determine the maximum data rates that can be achieved using an IEEE 802.11n system. Due to the lossy nature of the in vivo medium, achieving high data rates with reliable performance will be a challenge, especially since the in vivo antenna performance is strongly affected by near field coupling to the lossy medium and the signals levels will be limited by specified specific absorption rate (SAR) levels. We analyzed the bit error rate (BER) of a MIMO system with one pair of antennas placed in vivo and the second pair placed inside and outside the body at various distances from the in vivo antennas. The results were compared to SISO simulations and showed that by using MIMO in vivo, significant performance gain can be achieved, and at least two times the data rate can be supported with SAR limited transmit power levels, making it possible to achieve target data rates in the 100 Mbps.Comment: WAMICON 201

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie

    Vehicular networks : IEEE 802.11p analysis and integration into an heterogeneous WMN

    Get PDF
    Tese de Mestrado Integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    Performance of Real-TimeWireless Communication for Railway Environments with IEEE 802.11p

    Get PDF
    IEEE 802.11p complements the widespread 802.11 standard for use in vehicular environments. Designed for communication between wireless devices in rapidly changing environments, it handles situations where connection and communication must be completed in very short periods of time. Even though this is supposed to be a substantial improvement and essential for real-time applications, latencies have been rarely investigated in existing studies. Based on practical experiments, we evaluate how beneficial 802.11p’s changes in comparison to regular 802.11n are and whether the usage of IEEE 802.11p is suitable within environments with real-time constraints. We compare latencies of networks in OCB mode to both networks in IBSS (ad-hoc) and BSS/AP (access point) mode by measuring the initial connection speed and the latency of ICMP packets’ round-trip times. Furthermore, the response of the latter to disturbances is measured. The results show OCB to be superior to both BSS/AP and IBSS modes in average latency, maximum latency, and standard deviation under all tested circumstances

    Enabling high-bandwidth vehicular content distribution

    Full text link
    • …
    corecore