895 research outputs found

    Cloud benchmarking and performance analysis of an HPC application in Amazon EC2

    Get PDF
    Cloud computing platforms have been continuously evolving. Features such as the Elastic Fabric Adapter (EFA) in the Amazon Web Services (AWS) platform have brought yet another revolution in the High Performance Computing (HPC) world, further accelerating the convergence of HPC and cloud computing. Other public clouds also support similar features further fueling this change. In this paper, we show how and why the performance of a large-scale computational fluid dynamics (CFD) HPC application on AWS competes very closely with the one on Beskow - a Cray XC40 supercomputer at the PDC Center for High-Performance Computing - in terms of cost-efficiency with strong scaling up to 2304 processes. We perform an extensive set of micro and macro bench- marks in both environments and conduct a comparative analysis. Until as recently as 2020 these benchmarks have notoriously yielded unsatisfactory results for the cloud platforms compared with on-premise infrastructures. Our aim is to access the HPC capabilities of the cloud, and in general to demonstrate how researchers can scale and evaluate the performance of their application in the cloud.ENABL

    On Evaluating Commercial Cloud Services: A Systematic Review

    Full text link
    Background: Cloud Computing is increasingly booming in industry with many competing providers and services. Accordingly, evaluation of commercial Cloud services is necessary. However, the existing evaluation studies are relatively chaotic. There exists tremendous confusion and gap between practices and theory about Cloud services evaluation. Aim: To facilitate relieving the aforementioned chaos, this work aims to synthesize the existing evaluation implementations to outline the state-of-the-practice and also identify research opportunities in Cloud services evaluation. Method: Based on a conceptual evaluation model comprising six steps, the Systematic Literature Review (SLR) method was employed to collect relevant evidence to investigate the Cloud services evaluation step by step. Results: This SLR identified 82 relevant evaluation studies. The overall data collected from these studies essentially represent the current practical landscape of implementing Cloud services evaluation, and in turn can be reused to facilitate future evaluation work. Conclusions: Evaluation of commercial Cloud services has become a world-wide research topic. Some of the findings of this SLR identify several research gaps in the area of Cloud services evaluation (e.g., the Elasticity and Security evaluation of commercial Cloud services could be a long-term challenge), while some other findings suggest the trend of applying commercial Cloud services (e.g., compared with PaaS, IaaS seems more suitable for customers and is particularly important in industry). This SLR study itself also confirms some previous experiences and reveals new Evidence-Based Software Engineering (EBSE) lessons

    Early Observations on Performance of Google Compute Engine for Scientific Computing

    Full text link
    Although Cloud computing emerged for business applications in industry, public Cloud services have been widely accepted and encouraged for scientific computing in academia. The recently available Google Compute Engine (GCE) is claimed to support high-performance and computationally intensive tasks, while little evaluation studies can be found to reveal GCE's scientific capabilities. Considering that fundamental performance benchmarking is the strategy of early-stage evaluation of new Cloud services, we followed the Cloud Evaluation Experiment Methodology (CEEM) to benchmark GCE and also compare it with Amazon EC2, to help understand the elementary capability of GCE for dealing with scientific problems. The experimental results and analyses show both potential advantages of, and possible threats to applying GCE to scientific computing. For example, compared to Amazon's EC2 service, GCE may better suit applications that require frequent disk operations, while it may not be ready yet for single VM-based parallel computing. Following the same evaluation methodology, different evaluators can replicate and/or supplement this fundamental evaluation of GCE. Based on the fundamental evaluation results, suitable GCE environments can be further established for case studies of solving real science problems.Comment: Proceedings of the 5th International Conference on Cloud Computing Technologies and Science (CloudCom 2013), pp. 1-8, Bristol, UK, December 2-5, 201

    Performance Evaluation of Data-Intensive Computing Applications on a Public IaaS Cloud

    Get PDF
    [Abstract] The advent of cloud computing technologies, which dynamically provide on-demand access to computational resources over the Internet, is offering new possibilities to many scientists and researchers. Nowadays, Infrastructure as a Service (IaaS) cloud providers can offset the increasing processing requirements of data-intensive computing applications, becoming an emerging alternative to traditional servers and clusters. In this paper, a comprehensive study of the leading public IaaS cloud platform, Amazon EC2, has been conducted in order to assess its suitability for data-intensive computing. One of the key contributions of this work is the analysis of the storage-optimized family of EC2 instances. Furthermore, this study presents a detailed analysis of both performance and cost metrics. More specifically, multiple experiments have been carried out to analyze the full I/O software stack, ranging from the low-level storage devices and cluster file systems up to real-world applications using representative data-intensive parallel codes and MapReduce-based workloads. The analysis of the experimental results has shown that data-intensive applications can benefit from tailored EC2-based virtual clusters, enabling users to obtain the highest performance and cost-effectiveness in the cloud.Ministerio de Economía y Competitividad; TIN2013-42148-PGalicia. Consellería de Cultura, Educación e Ordenación Universitaria; GRC2013/055Ministerio de Educación y Ciencia; AP2010-434

    Analysis of I/O Performance on an Amazon EC2 Cluster Compute and High I/O Platform

    Get PDF
    “This is a post-peer-review, pre-copyedit version of an article published in Journal of Grid Computing. The final authenticated version is available online at: https://doi.org/10.1007/s10723-013-9250-y[Abstract] Cloud computing is currently being explored by the scientific community to assess its suitability for High Performance Computing (HPC) environments. In this novel paradigm, compute and storage resources, as well as applications, can be dynamically provisioned on a pay-per-use basis. This paper presents a thorough evaluation of the I/O storage subsystem using the Amazon EC2 Cluster Compute platform and the recent High I/O instance type, to determine its suitability for I/O-intensive applications. The evaluation has been carried out at different layers using representative benchmarks in order to evaluate the low-level cloud storage devices available in Amazon EC2, ephemeral disks and Elastic Block Store (EBS) volumes, both on local and distributed file systems. In addition, several I/O interfaces (POSIX, MPI-IO and HDF5) commonly used by scientific workloads have also been assessed. Furthermore, the scalability of a representative parallel I/O code has also been analyzed at the application level, taking into account both performance and cost metrics. The analysis of the experimental results has shown that available cloud storage devices can have different performance characteristics and usage constraints. Our comprehensive evaluation can help scientists to increase significantly (up to several times) the performance of I/O-intensive applications in Amazon EC2 cloud. An example of optimal configuration that can maximize I/O performance in this cloud is the use of a RAID 0 of 2 ephemeral disks, TCP with 9,000 bytes MTU, NFS async and MPI-IO on the High I/O instance type, which provides ephemeral disks backed by Solid State Drive (SSD) technology.Ministerio de Ciencia e Innovación; TIN2010-16735Ministerio de Educación; AP2010-4348Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ref. 2010/

    Evaluating the Suitability of Commercial Clouds for NASA's High Performance Computing Applications: A Trade Study

    Get PDF
    NASAs High-End Computing Capability (HECC) Project is periodically asked if it could be more cost effective through the use of commercial cloud resources. To answer the question, HECCs Application Performance and Productivity (APP) team undertook a performance and cost evaluation comparing three domains: two commercial cloud providers, Amazon and Penguin, and HECCs in-house resourcesthe Pleiades and Electra systems. In the study, the APP team used a combination of the NAS Parallel Benchmarks (NPB) and six full applications from NASAs workload on Pleiades and Electra to compare performance of nodes based on three different generations of Intel Xeon processorsHaswell, Broadwell, and Skylake. Because of export control limitations, the most heavily used applications on Pleiades and Electra could not be used in the cloud; therefore, only one of the applications, OpenFOAM, represents work from the Aeronautics Research Mission Directorate and the Human and Exploration Mission Directorate. The other five applications are from the Science Mission Directorate

    Open Source Solutions for Building IaaS Clouds

    Get PDF
    Cloud Computing is not only a pool of resources and services offered through the internet, but also a technology solution that allows optimization of resources use, costs minimization and energy consumption reduction. Enterprises moving towards cloud technologies have to choose between public cloud services, such as: Amazon Web Services, Microsoft Cloud and Google Cloud services, or private self built clouds. While the firsts are offered with affordable fees, the others provide more privacy and control. In this context, many open source softwares approach the buiding of private, public or hybrid clouds depending on the users need and on the available capabilities. To choose among the different open source solutions, an analysis is necessary in order to select the most suitable according with the enterprise’s goals and requirements. In this paper, we present a depth study and comparison of five open source frameworks that are gaining more attention recently and growing fast: CloudStack, OpenStack, Eucalyptus, OpenNebula and Nimbus. We present their architectures and discuss different properties, features, useful information and our own insights on these frameworks

    Cloud benchmarking for maximising performance of scientific applications

    Get PDF
    This research was pursued under the EPSRC grant, EP/K015745/1, a Royal Society Industry Fellowship and an AWS Education Research grant.How can applications be deployed on the cloud to achieve maximum performance? This question is challenging to address with the availability of a wide variety of cloud Virtual Machines (VMs) with different performance capabilities. The research reported in this paper addresses the above question by proposing a six step benchmarking methodology in which a user provides a set of weights that indicate how important memory, local communication, computation and storage related operations are to an application. The user can either provide a set of four abstract weights or eight fine grain weights based on the knowledge of the application. The weights along with benchmarking data collected from the cloud are used to generate a set of two rankings - one based only on the performance of the VMs and the other takes both performance and costs into account. The rankings are validated on three case study applications using two validation techniques. The case studies on a set of experimental VMs highlight that maximum performance can be achieved by the three top ranked VMs and maximum performance in a cost-effective manner is achieved by at least one of the top three ranked VMs produced by the methodology.PostprintPeer reviewe

    Survey and Analysis of Production Distributed Computing Infrastructures

    Full text link
    This report has two objectives. First, we describe a set of the production distributed infrastructures currently available, so that the reader has a basic understanding of them. This includes explaining why each infrastructure was created and made available and how it has succeeded and failed. The set is not complete, but we believe it is representative. Second, we describe the infrastructures in terms of their use, which is a combination of how they were designed to be used and how users have found ways to use them. Applications are often designed and created with specific infrastructures in mind, with both an appreciation of the existing capabilities provided by those infrastructures and an anticipation of their future capabilities. Here, the infrastructures we discuss were often designed and created with specific applications in mind, or at least specific types of applications. The reader should understand how the interplay between the infrastructure providers and the users leads to such usages, which we call usage modalities. These usage modalities are really abstractions that exist between the infrastructures and the applications; they influence the infrastructures by representing the applications, and they influence the ap- plications by representing the infrastructures
    corecore