321 research outputs found

    Statistical Modeling of Multiple Access Interference Power: a Nakagami-m Random Variable

    Get PDF
    This paper proposes a statistical model for the total multiple access interference (MAI) power for both Direct-Sequence Code Division Multiple Access (DS-CDMA) and Multicarrier Code Division Multiple Access (MC-CDMA) systems. We consider the use of both Walsh-Hadamard (WH) and Gold spreading codes transmitting over the asynchronous uplink channel. Detailed signal models of both CDMA systems are derived illustrating the production of MAI under asynchronous conditions. The paper demonstrates the Gaussian nature of the total MAI and shows that the probability density function (pdf) of the total MAI power can be very accurately characterized by the Nakagami-m distribution

    Statistical Analysis of Interference in Asynchronous MC-CDMA Systems

    Full text link
    Two major sources of interference affect asynchronous MC-CDMA systems, i.e. multiple access interference due to subcarriers with the same frequency (MAI) and multiple access interference due to subcarriers with different frequency (ICI). Both MAI and ICI are generally modelled as zero-mean Gaussian random variable and their power has been previously been derived in the case of uniformly distributed timing offsets. In this paper, we derive an expression of the conditional power of the MAI and ICI as a function of timing offset. The advantage is that the interference power can then be derived for various distributions of the timing offsets. We then apply the expression to calculating the MAI and ICI power for two different distributions of timing offsets, i.e. uniform distribution and Poisson distribution. Finally, we propose a statistical model for asynchronous MC-CDMA systems that will simplify the computer simulation process of these systems. It is based on modelling the asynchronous system with a synchronous system followed by additive noise representing the MAI and ICI. The model is validated by comparing the BER at the output of the asynchronous system and the model

    MULTIPLE ACCESS INTERFERENCE REDUCTION FOR DS-CDMA IN THE PRESENCE OF RAYLEIGH FADING

    Full text link
    This paper proposes an alternative transmission structure to the existing direct-sequence code division multiple access (DSCDMA) technique in order to alleviate the decision variable from a substantial portion of the multiple access interference (MAI) incurred over an asynchronous slow varying Rayleigh fading channel. The proposed technique uses a dual frequency switching system that shifts lagging interference components to an alternative frequency band thus reducing the degree ofMAI incurred in the considered symbol-by-symbol matched _lter recovery. Bit-error rate (BER) performance comparisons are offered for the use of both Gold andWalsh-Hadamard (WH) codes. The proposed technique successfully reduces the amount of MAI experienced, however, this reduction comes at the cost of an increased bandwidth

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Wavelet-based multi-carrier code division multiple access systems

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    On the performance and capacity of space-time block coded multicarrier CDMA communication systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Adaptive bootstrap signal separators for BPSK/QAM-modulated wireless CDMA systems in a multipath environment

    Get PDF
    CDMA is an attractive multiple-access scheme, because of its potential capacity increase and its anti-multipath fading capability. For satisfactory performance, however, the effect of the near-far problem has to be resolved. This problem can be combated by using power-control, which, however, results in an overall reduction in communication ranges, and thus in a loss of capacity. Among other methods for mitigating the near-far problem is the use of decorrelating receivers, both of fixed type, which directly utilizes the cross-correlation of the users codes, and of adaptive type, which uses recursive algorithms that leads to signal decorrelation. Not to lessen the importance of other adaptive algorithms, the current research concentrates on what was termed in the literature bootstrap algorithm . Although the emphasis will be on applying the adaptive bootstrap decorrelator, the fixed type will be used primarily to provide comparison. Also used for comparison are both blind adaptive and training sequence based MMSE. Most of the literature on multiuser detection has been assuming BPSK. However, a need for transferring wideband data demands using modulation schemes with high bits/cycle, such as QAM. Therefore, modification of the receiver is considered, so that QAM-modulation can be applied efficiently, using the complex signal approach of this modulation. For the asynchronous channel, vast amounts of research have been devoted to using one-shot matched filter banks followed by conventional decorrelators which implement the inverse of some (partial) correlation matrix. In this work, an adaptive bootstrap version is presented, which is suitable for the one-shot structure shown previously to be more robust to errors in delay estimation. It has also been noted that such a correlation matrix can, depending on the channel characteristics, become ill-conditioned or even singular. Therefore, another matched filtering structure, followed by what is called a multishot conventional (fixed type) decorrelator, has been previously suggested to mitigate this singularity problem. However, the fixed type of the multishot decorrelator is expected to have similar non-robustness to errors in delay estimation as was previously shown for the one-shot. Therefore, the adaptive multishot bootstrap decorrelator is presented and evaluated. Also, by adding an adaptive canceler, an extension to the above matched filter-decorrelator combination, will be proposed and evaluated. A multipath time-variant fading environment will be used in some of these performance evaluations. Finally, when handling multipath channels, the question is raised whether path combining should be done before or after the signals are decorrelated. For the asynchronous case, a one-shot extension of the bootstrap algorithm is presented, which is capable of decorrelating the signals from resolved paths of different users, to facilitate the decorrelate before combining case

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    Reducing Multiple Access Interference in Broadband Multi-User Wireless Networks

    Get PDF
    This dissertation is devoted to developing multiple access interference (MAI) reduction techniques for multi-carrier multi-user wireless communication networks. In multi-carrier code division multiple access (MC-CDMA) systems, a full multipath diversity can be achieved by transmitting one symbol over multiple orthogonal subcarriers by means of spreading codes. However, in frequency selective fading channels, orthogonality among users can be destroyed leading to MAI. MAI represents the main obstacle to support large number of users in multi-user wireless systems. Consequently, MAI reduction becomes a main challenge when designing multi-carrier multi-user wireless networks. In this dissertation, first, we study MC-CDMA systems with different existing MAI reduction techniques. The performance of the studied systems can be further improved by using a fractionally spaced receivers instead of using symbol spaced receivers. A fractionally spaced receiver is obtained by oversampling received signals in a time domain. Second, a novel circular-shift division multiple access (CSDMA) scheme for multi-carrier multi-user wireless systems is developed. In CSDMA, each symbol is first spread onto multiple orthogonal subcarriers in the frequency domain through repetition codes. The obtained frequency-domain signals are then converted to a time-domain representation. The time-domain signals of different users are then circularly shifted by different numbers of locations. The time-domain circular shifting enables the receiver to extract signals from different users with zero or a small amount of MAI. Our results show that the CSDMA scheme can achieve a full multipath diversity with a performance outperforms that of orthogonal frequency division multiple access (OFDMA). Moreover, multipath diversity of CSDMA can be further improved by employing the time-domain oversampling. Performance fluctuations due to a timing offset between transmitter and receiver clocks in MC-CDMA and CSDMA systems can be removed by employing the time-domain oversampling. Third, we study the theoretical error performance of high mobility single-user wireless communication system with doubly selective (time-varying and frequency-selective) fading channel under impacts of imperfect channel state information (CSI). Throughout this dissertation, intensive computer simulations are performed under various system configurations to investigate the obtained theoretical results, excellent agreements between simulation and theoretical results were observed in this dissertation
    corecore