71,494 research outputs found

    Performance comparison of power saving strategies for mobile Web access

    Get PDF
    One of the critical issues in mobile Web access is the usage of limited energy resources of mobile computers. Unfortunately, the legacy TCP/IP architecture is very inefficient. This work proposes and analyzes power-saving strategies for mobile Web access. Specifically, in this paper we develop an energy-consumption model for Web transactions and, based on it, we propose and compare four different energy saving strategies: ideal, Indirect-TCP (I-TCP), local and global. The ideal strategy is unfeasible but it is used as a reference bound as it guarantees the lowest energy consumption. The other strategies have been implemented and compared in a real test-bed. The performance comparison is carried out by measuring two main performance figures: the energy spent for downloading a Web page, and the associated transfer-time. Experimental results show that relevant energy saving is achievable and that, among the feasible strategies, the global one gives the best performance: with this strategy we can save (on average) up to 88% of the energy. Furthermore, our results indicate that this power saving is obtained without a significant increase in the transfer-time perceived by the users (on average, 0.2s). Finally, by comparing the feasible strategies, we observe that the global one is much closer to the ideal case than the other strategies. In detail, the global strategy is about twice more efficient than the local one, and eight times more efficient than the I-TCP strategy

    Base Station Switching Problem for Green Cellular Networks with Social Spider Algorithm

    Full text link
    With the recent explosion in mobile data, the energy consumption and carbon footprint of the mobile communications industry is rapidly increasing. It is critical to develop more energy-efficient systems in order to reduce the potential harmful effects to the environment. One potential strategy is to switch off some of the under-utilized base stations during off-peak hours. In this paper, we propose a binary Social Spider Algorithm to give guidelines for selecting base stations to switch off. In our implementation, we use a penalty function to formulate the problem and manage to bypass the large number of constraints in the original optimization problem. We adopt several randomly generated cellular networks for simulation and the results indicate that our algorithm can generate superior performance

    Fostering energy awareness in residential homes using mobile devices

    Get PDF
    There is considerable global effort being made towards identifying ways of reducing energy consumption to cope with growing demands. Although there is potential for energy saving in many sectors, our focus is on reducing energy consumption in residential homes. We have developed a system which combines home automation and energy usage monitoring technologies. The system offers a range of tools designed for mobile devices to assist users with monitoring their energy usage and provides mechanisms for setting up and controlling home appliances to conserve energy. In this paper we describe our system and a user study we have conducted to evaluate its effectiveness. The findings of the study show the potential benefits of this type of mobile technology

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Energy-Efficient Streaming Using Non-volatile Memory

    Get PDF
    The disk and the DRAM in a typical mobile system consume a significant fraction (up to 30%) of the total system energy. To save on storage energy, the DRAM should be small and the disk should be spun down for long periods of time. We show that this can be achieved for predominantly streaming workloads by connecting the disk to the DRAM via a large non-volatile memory (NVM). We refer to this as the NVM-based architecture (NVMBA); the conventional architecture with only a DRAM and a disk is referred to as DRAMBA. The NVM in the NVMBA acts as a traffic reshaper from the disk to the DRAM. The total system costs are balanced, since the cost increase due to adding the NVM is compensated by the decrease in DRAM cost. We analyze the energy saving of NVMBA, with NAND flash memory serving as NVM, relative to DRAMBA with respect to (1) the streaming demand, (2) the disk form factor, (3) the best-effort provision, and (4) the stream location on the disk. We present a worst-case analysis of the reliability of the disk drive and the flash memory, and show that a small flash capacity is sufficient to operate the system over a year at negligible cost. Disk lifetime is superior to flash, so that is of no concern
    corecore