6,100 research outputs found

    Energy performance forecasting of residential buildings using fuzzy approaches

    Get PDF
    The energy consumption used for domestic purposes in Europe is, to a considerable extent, due to heating and cooling. This energy is produced mostly by burning fossil fuels, which has a high negative environmental impact. The characteristics of a building are an important factor to determine the necessities of heating and cooling loads. Therefore, the study of the relevant characteristics of the buildings, regarding the heating and cooling needed to maintain comfortable indoor air conditions, could be very useful in order to design and construct energy-efficient buildings. In previous studies, different machine-learning approaches have been used to predict heating and cooling loads from the set of variables: relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area and glazing area distribution. However, none of these methods are based on fuzzy logic. In this research, we study two fuzzy logic approaches, i.e., fuzzy inductive reasoning (FIR) and adaptive neuro fuzzy inference system (ANFIS), to deal with the same problem. Fuzzy approaches obtain very good results, outperforming all the methods described in previous studies except one. In this work, we also study the feature selection process of FIR methodology as a pre-processing tool to select the more relevant variables before the use of any predictive modelling methodology. It is proven that FIR feature selection provides interesting insights into the main building variables causally related to heating and cooling loads. This allows better decision making and design strategies, since accurate cooling and heating load estimations and correct identification of parameters that affect building energy demands are of high importance to optimize building designs and equipment specifications.Peer ReviewedPostprint (published version

    Deep Divergence-Based Approach to Clustering

    Get PDF
    A promising direction in deep learning research consists in learning representations and simultaneously discovering cluster structure in unlabeled data by optimizing a discriminative loss function. As opposed to supervised deep learning, this line of research is in its infancy, and how to design and optimize suitable loss functions to train deep neural networks for clustering is still an open question. Our contribution to this emerging field is a new deep clustering network that leverages the discriminative power of information-theoretic divergence measures, which have been shown to be effective in traditional clustering. We propose a novel loss function that incorporates geometric regularization constraints, thus avoiding degenerate structures of the resulting clustering partition. Experiments on synthetic benchmarks and real datasets show that the proposed network achieves competitive performance with respect to other state-of-the-art methods, scales well to large datasets, and does not require pre-training steps

    The Structure Transfer Machine Theory and Applications

    Get PDF
    Representation learning is a fundamental but challenging problem, especially when the distribution of data is unknown. We propose a new representation learning method, termed Structure Transfer Machine (STM), which enables feature learning process to converge at the representation expectation in a probabilistic way. We theoretically show that such an expected value of the representation (mean) is achievable if the manifold structure can be transferred from the data space to the feature space. The resulting structure regularization term, named manifold loss, is incorporated into the loss function of the typical deep learning pipeline. The STM architecture is constructed to enforce the learned deep representation to satisfy the intrinsic manifold structure from the data, which results in robust features that suit various application scenarios, such as digit recognition, image classification and object tracking. Compared to state-of-the-art CNN architectures, we achieve the better results on several commonly used benchmarks\footnote{The source code is available. https://github.com/stmstmstm/stm }
    • …
    corecore